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Projects of future e*e colliders
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Energy landmarks of ee colliders

91 GeV: repeat LEP1 experiments: full LEP1

161 GeV: E=2xM,,, threshold scan

repeat 1996 at LEP2, 1000x lumi

240-250 GeV: Higgs factory

350 GeV: E=2xM,, threshold scan

400 GeV: maximum top-pair cross-section
500-3000 GeV: discovery of new physics!
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Need in precise M, measurement

* My uncertainty Is a parametric error of SM
predictions, which limits the accuracy of
any SM calculations

* For the HWW vertex, the parametric error:
A(g)/g = 6.9-A(My)/M4
A(Br)/Br = 9.1-A(Mp)/My
* At CLIC: precision of HWW coupling
measurement ~0.1% => A(M,) =20 MeV
needed
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What precision do we expect?

* Higgs mass can be reconstructed as pp
recoil mass in ee - ZH - ppH events

 CEPC: A(M,))=6 MeV

» FCC: AM,)=11 MeV

* ILC: A(My)=14 MeV

e CLIC: A(M,)=110 MeV ®
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Why recoll mass Is so bad at CLIC?

Conspiracy of several factors:

 Small statistics at CLIC, because
— small int. lumi at 380 GeV (priority to high energy)
— cross-section at 380 GeV is only %2 of 250 GeV

* Recoil mass method relies on precise knowledge of
Initial state kinematics. BUT:
— Beam energy spread at CLIC 2.5 times bigger than at ILC
— Beamstrahlung at CLIC!
— ISR at 380 GeV - radiative return to 250 GeV
(energy of maximum cross-sections)
* Boosted (at 380 GeV) muon: Py reconstructed with less
precision
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New method to measure M,
(proposed for ILC by Tian JunPing)

Select ee - ZH - ppbb events
Reconstruct Z - pp system

Reconstruct directions, not energies, of

b-jets. (Direction is measured much better
than energy, both in resolution and in
systematics)

Calculate momenta of b-jets by formula

Due to additional constraint from jet
direction, beam particles P, does not
enter the formula

Only assume P; balance of beams

P.Shvydkin, I.Boyko Higgs mass

e

p1
V’Z

Bl
’
.
; c,

/
Ex

_pf' sin(¢g — @)

~ sinfy sin(¢ — o1)

o sin(¢y — M)

sinfy sin(¢; — o9)



What we want to check
at generator-level

e ...that method is robust against reasonably small
Imbalance of beam P

* ...that typical CLIC resolution on muon
momentum Is sufficient

e We don’t care about resolution on muon
direction — In any case It iIs much better than jet
direction

* ...but we want to check that jet direction
resolution is good enough for our purposes
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Estimation of experimental errors

 We estimate RMS of M, reconstruction

* To estimate experimental errors,
generated events are scaled to 1000 fb-1
(expected at 380 GeV)

* Selection efficiency Is taken from the CLIC
study ( Eur.Phys.J.C 77 (2017) 7, 475)
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Simplest test: parton truth level

Generator level simulation: Pythia8

my, reconstructed using TJP method

§ o Entries 1000000
Z From the truth ppbb system, Mean 125
we get back the natural RMS 0.006036
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Beam P balance

m,, from b after smearing of P of e/p on 250 MeV

* We (independently)
smear P of both beam
particle by a Gaussian

* Uncertainty A(My)=20
MeV Is observed for
beam smearing

expected dm,, vs [ " smearing parameter

G P :25OMeV § . 3 Fit results
T = 1 = intercept -0.3906 /,/
£ 10F slope  0.08545

* |t seems, we are
completely safe from
this side o

00 2000 2200
Sp‘ [MeV]
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Muon momentum resolution

* We (independently) smear e e T
momentum of both muons by .« e
a Gaussian (b-quark kept
with truth parameters)
— Ignore angular dependence of
resolution and all other details s s s 1Izle}énHl[cI;elJ]ﬂ
« Uncertainty A(Mp)=20 MeV is ~ ooeasmsip, | snesing parametr
observed for momentum L et o
smearing o(P;)/P+=0.6% o e
* Much better resolution is e
expected at CLIC e R
(6(P,)/P1=2-105 P, ) Safe! o e e
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b-quark direction smearing

my, from bb after smearing of the direction of b/b on 5 mrad

* We (independently) smear
directions of both b-quarks

by a Gaussian (muons kept
with truth parameters)

* For smearing by 0.5° (will be
seen at full-simulation level),

uncertainty A(My)=45 MeV 5 ,/

is observed £ e 555 / g
* Significant! We'll carefully - -

check this result in full o

detector simulation A e e e e

30 35
36, [mrad]
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Truth jets

 We assume 0.5° resolution of jets
reconstructed In calorimeter with respect

to the truth jet. But how well the truth jet
represents the truth b-quark?

— Hadronization
— Gluon radiation, parton showers
— Escaping neutrino from leptonic decays

* Let’s reconstruct My not from b-quarks, but
from b-jets constructed from truth particles
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M., reconstructed from b-jets

ents

o
pd

* Influence of jet
formation from
partons is very
significant

* The effect
strongly depends
on jet clustering
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m,, from b-jets for cone angles 15° and 75°

Cone angle 15°
“Delta-function”: Entries 1000000
with wide enough cone, Mean 123.2
jets are reconstructed —» RMS 0.94
“perfectly” (unless a
neutrino was radiated)
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Must look at the full simulation of jets in calorimeter!
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Now we go to the full detector
simulation/reconstruction

* Whizard_1.9 for event generation
* |[LC soft for simulation, reconstruction, analysis
* FastJet 3.3 for jet clustering



Spectrum of reconstructed
Higgs masses

m, calculated from reconstructed b,

Poor resolution i Alewerts

A(MH) =215 MeV zogf_ Mean 121
_ Std Dev  0.0561

VLC was chosen -

among several t

algorithms

Its parameters were §

optimisated e

=> tiny improvements!
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Distance between truth quark
and reconstructed et

Fit with Axexp(- 2X—;2) formula

* Most probable values : .= Entries 12601
hgv6e79aussian shape ~ wf {0 e Roesﬁg'ts

o~0. i

* Non-gaussian tail = e
worsens the
resolution

* Need to understand
origin of this tail prdebeveen pauarkandie

* Work in progress ...
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Summary

The method proposed for ILC seems to be especially
good for CLIC

— It is safe against large beam energy spread and hard photon
radiation

Beam P; imbalance and muon momentum resolution
contribute negligible uncertainty

A(My)=45 MeV is expected from jet direction resolution
of 0.5°

With jets from Full Simulation we observe most probable
angle < 0.67° but with a huge tail. The tail destroys
completely the precision on My (215 MeV)

Need to understand the shape of jet angular resolution!
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Future collider candidates

@=><=@Q ©°2><090

O O
* ILC: 20 (30?) km, 250 * HL LHC:
(500?) GeV, Higgs 14 TeV, 3 ab-t
factory (Giga-Z possible) o« HE-LHC:
GC s s Tew 2,
10N « CEPC-pp:

 CEPC: 100 km, 250 GeV,
Higgs physics + Giga-Z 70 TeV, 10 ab~

+ FCC: 100 km, 350 Gev, * FCC-pp:
Higgs + Tera-Z 100 TeV, 5 ab
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Luminosity [10** cm2s]
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Comparison of e*e projects
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Why recoil mass Is so bad at CLIC?
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Note the horizontal scale !!!
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Remark about jet directions

* Our My formula works at the level of partons
(b-quarks)

* There are two steps where b-quark direction can
be distorted:

— 1) from b-quarks to truth jets
— 2) from truth jets to jet reconstruction in calorimeter

* At generator level we can only look at step 1.
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M., uncertainty versus
cone opening angle

Expected dm,, vs cone angle : :
" * Influence of jet formation

from partons is very
significant

e Atleast, itis not killing the
method completely

* The effect strongly
depends on jet clustering

e Our conclusion: it is
pointless to study the
effect at generator level
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Why such a poor resolution?

* We tried several jet clustering algorithms:
Durham, kt, anti-kt, Cambridge, Valencia

—VLC Is found to give the best result, but not
dramatically better

* We varied VLC parameters. Found
optimum, but improvement is small

— Optimal VLC parameters: AR=0.4, f=y=1.0
— Optimization on y,; gives tiny improvement
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Jet direction resolution

~ JetPhimdThetaResoluon
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Theta and Phi resolutions below 1 degree for most detector regions, for forward and
endcap jets larger phi resolution values
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