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$ 5.5G
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$ ???
(360 GeV)

Projects of future e+e- colliders
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Energy landmarks of ee colliders

91 GeV: repeat LEP1 experiments: full LEP1 
data every 5 min !!!!!

161 GeV:  E=2xMW, threshold scan

repeat 1996 at LEP2, 1000x lumi

240-250 GeV: Higgs factory

350 GeV: E=2xMt, threshold scan

400 GeV: maximum top-pair cross-section

500-3000 GeV: discovery of new physics!
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Need in precise MH measurement

• MH uncertainty is a parametric error of SM 
predictions, which limits the accuracy of 
any SM calculations

• For the HWW vertex, the parametric error:
Δ(g)/g = g = 6.9∙Δ(MH)/g = MH

Δ(Br)/g = Br = 9.1∙Δ(MH)/g = MH

• At CLIC: precision of HWW coupling 
measurement ~0.1%  =>  Δ(MH) ≈20 MeV 
needed
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What precision do we expect?

• Higgs mass can be reconstructed as μμ 
recoil mass in ee→ZH→μμH events

• CEPC: Δ(MH)=6 MeV 
• FCC: Δ(MH)=11 MeV
• ILC: Δ(MH)=14 MeV 
• CLIC: Δ(MH)=110 MeV  
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Why recoil mass is so bad at CLIC?

Conspiracy of several factors:

• Small statistics at CLIC, because 
– small int. lumi at 380 GeV (priority to high energy)
– cross-section at 380 GeV is only ½ of 250 GeV

• Recoil mass method relies on precise knowledge of 
initial state kinematics. BUT:
– Beam energy spread at CLIC 2.5 times bigger than at ILC
– Beamstrahlung at CLIC!
– ISR at 380 GeV – radiative return to 250 GeV                    

(energy of maximum cross-sections)

• Boosted (at 380 GeV) muon: PT reconstructed with less 
precision
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New method to measure MH 
(proposed for ILC by Tian JunPing)

• Select ee→ZH→μμbb events
• Reconstruct Z→μμ system
• Reconstruct directions, not energies, of 

b-jets. (Direction is measured much better 
than energy, both in resolution and in 
systematics)

• Calculate momenta of b-jets by formula
• Due to additional constraint from jet 

direction, beam particles PZ does not 
enter the formula 

• Only assume PT balance of beams
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What we want to check 
at generator-level

• …that method is robust against reasonably small 
imbalance of beam PT

• …that typical CLIC resolution on muon 
momentum is sufficient

• We don’t care about resolution on muon 
direction – in any case it is much better than jet 
direction

• …but we want to check that jet direction 
resolution is good enough for our purposes
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Estimation of experimental errors

• We estimate RMS of MH reconstruction

• To estimate experimental errors, 
generated events are scaled to 1000 fb-1 
(expected at 380 GeV)

• Selection efficiency is taken from the CLIC 
study ( Eur.Phys.J.C 77 (2017) 7, 475 )
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Simplest test: parton truth level

From the truth μμbb system,
we get back the natural 
Higgs width at nominal mass

Generator level simulation: Pythia8
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Beam PT balance

• We (independently) 
smear PT of both beam 
particle by a Gaussian

• Uncertainty Δ(MH)=20 
MeV is observed for 
beam smearing 
σ(PT)=250MeV

• It seems, we are  
completely safe from 
this side
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Muon momentum resolution

• We (independently) smear 
momentum of both muons by 
a Gaussian (b-quark kept 
with truth parameters)
– Ignore angular dependence of 

resolution and all other details

• Uncertainty Δ(MH)=20 MeV is 
observed for momentum 
smearing σ(PT)/g = PT=0.6%

• Much better resolution is 
expected at CLIC 
( σ(PT)/g = PT=2·10-5 PT  )   Safe!
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b-quark direction smearing

• We (independently) smear 
directions of both b-quarks 
by a Gaussian (muons kept 
with truth parameters)

• For smearing by 0.5º (will be 
seen at full-simulation level), 
uncertainty Δ(MH)=45 MeV 
is observed 

• Significant! We’ll carefully 
check this result in full 
detector simulation
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Truth jets

• We assume 0.5º resolution of jets 
reconstructed in calorimeter with respect 
to the truth jet. But how well the truth jet 
represents the truth b-quark?
– Hadronization
– Gluon radiation, parton showers
– Escaping neutrino from leptonic decays

• Let’s reconstruct MH not from b-quarks, but 
from b-jets constructed from truth particles
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M
H
 reconstructed from b-jets

“Delta-function”: 
with wide enough cone,
jets are reconstructed 
“perfectly” (unless a
neutrino was radiated)

 Influence of jet 
formation from 
partons is very 
significant

 The effect 
strongly depends 
on jet clustering 

Must look at the full simulation of jets in calorimeter!



Now we go to the full detector 
simulation/g = reconstruction

● Whizard_1.9  for event generation
● ILC soft for simulation, reconstruction, analysis 
●  FastJet_3.3 for jet clustering
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Spectrum of reconstructed 
Higgs masses

• Poor resolution  
Δ(M

H
) = 215 MeV

• VLC was chosen 
among several 
algorithms 

• Its parameters were 
optimisated

• => tiny improvements!
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Distance between truth quark 
and reconstructed jet

 Most probable values  
have gaussian shape 

σ~0.67°
 Non-gaussian tail 

worsens the 
resolution 

 Need to understand 
origin of this tail 

 Work in progress …
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Summary
• The method proposed for ILC seems to be especially 

good for CLIC
– It is safe against large beam energy spread and hard photon 

radiation

• Beam PT imbalance and muon momentum resolution 
contribute negligible uncertainty

• Δ(MH)=45 MeV is expected from jet direction resolution 
of 0.5°

• With jets from Full Simulation we observe most probable 
angle < 0.67° but with a huge tail. The tail destroys 
completely the precision on MH (215 MeV)

• Need to understand the shape of jet angular resolution!
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Backup slides
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Future collider candidates

• ILC: 20 (30?) km, 250 
(500?) GeV, Higgs 
factory  (Giga-Z possible)

• CLIC: 50 km, 3000 GeV, 
Higgs, Top, discoveries

• CEPC: 100 km, 250 GeV, 
Higgs physics + Giga-Z

• FCC: 100 km, 350 GeV, 
Higgs + Tera-Z

• HL LHC:                  
14 TeV, 3 ab-1

• HE-LHC:                  
33 TeV, 2 ab-1

• CEPC-pp:                    
 70 TeV, 10 ab-1

• FCC-pp:                      
100 TeV, 5 ab-1
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Comparison of e+e- projects
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Why recoil mass is so bad at CLIC?

ILC
CEPC

CLIC

Note the horizontal scale !!!

FCCee
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Remark about jet directions

• Our MH formula works at the level of partons        
 (b-quarks)

• There are two steps where b-quark direction can 
be distorted:
– 1) from b-quarks to truth jets
– 2) from truth jets to jet reconstruction in calorimeter

• At generator level we can only look at step 1. 
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MH uncertainty versus                
cone opening angle

• Influence of jet formation 
from partons is very 
significant

• At least, it is not killing the 
method completely

• The effect strongly 
depends on jet clustering 

• Our conclusion: it is 
pointless to study the 
effect at generator level

• Must look at the full 
simulation of jets in 
calorimeter
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Why such a poor resolution?

• We tried several jet clustering algorithms: 
Durham, kt, anti-kt, Cambridge, Valencia 
– VLC is found to give the best result, but not 

dramatically better

• We varied VLC parameters. Found 
optimum, but improvement is small
– Optimal VLC parameters: ΔR=0.4, β=γ=1.0

– Optimization on y23 gives tiny improvement
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Jet direction resolution
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