

Data Center Simulation for the BM@N experiment of the NICA project

D.PRIAKHINA

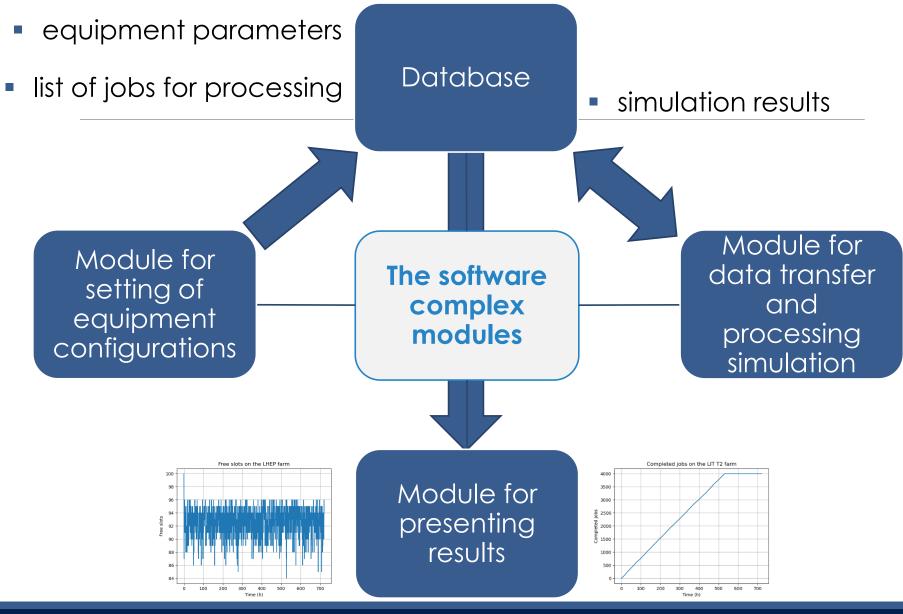
V.TROFIMOV, G.OSOSKOV, K.GERTSENBERGER

The important task

Introduction

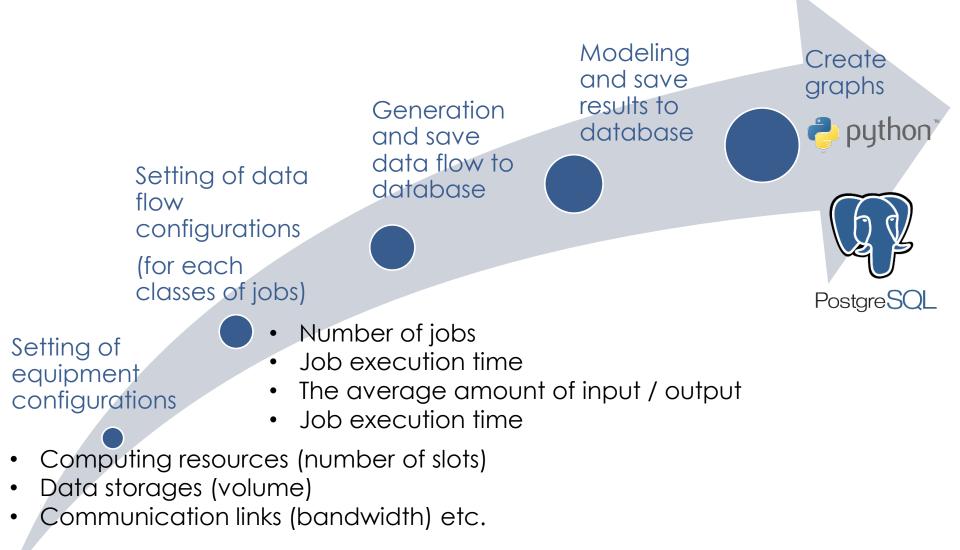
Simulation of data storage and processing centers, both as from the BM@N experiment, as for simulated particle collision events for comparison with the expected results of real processes of data storage and processing.

Probabilistic approach to simulate

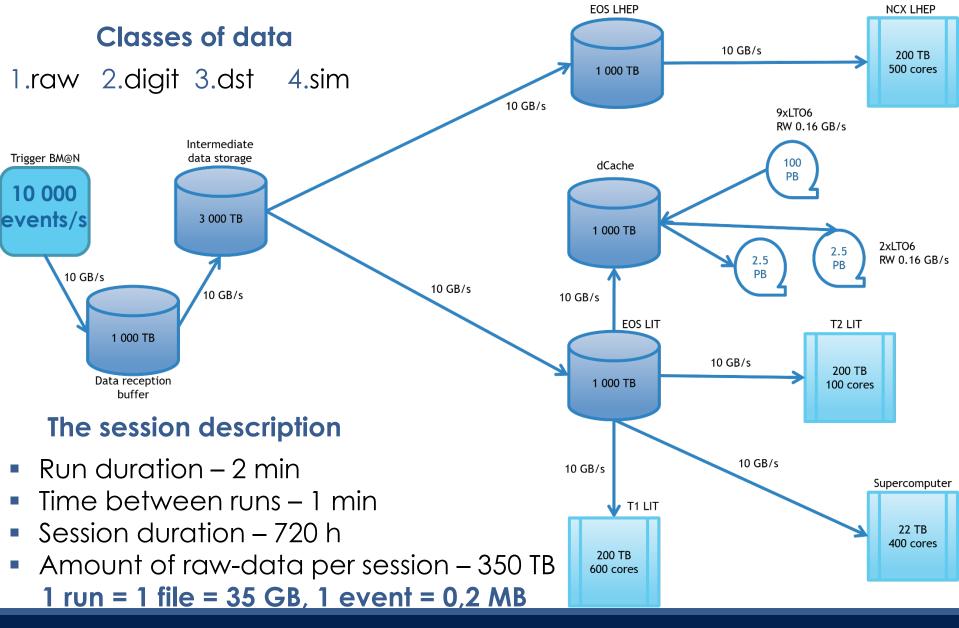

- Representation of information processes as byte streams
- Using of probability distributions of significant data acquisition processes – the probabilities of loss of incoming information should be determined for different configurations of the data centers equipment

Simulation goal

Determine the hardware configuration that will ensure the operability of the data storage and processing system – takes into account hardware parameters and expected data flows and jobs.

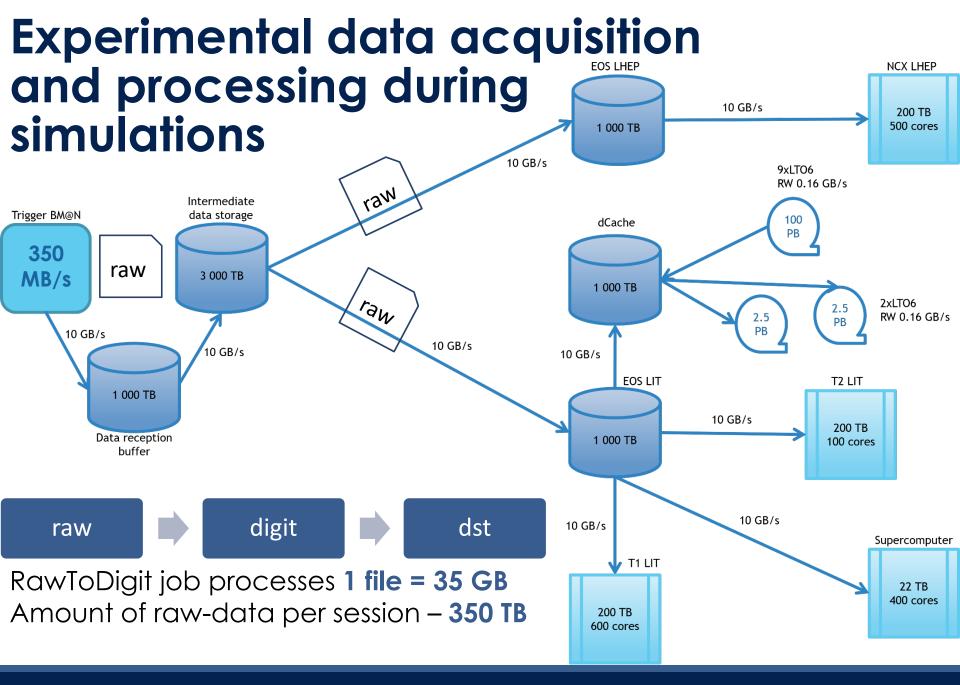


Software complex for simulation



Stages of the software complex

The simulated structure


AYSS-2020

15.12.2020

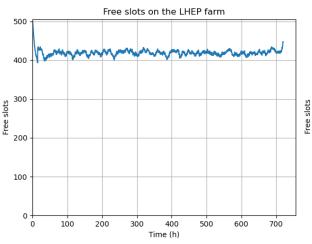
5

Classes of jobs

Nº	Class	Event processing time on one processor (ms)	Average amount of input (GB)	Number of events in the file (1 file = 1 job)	Job execution time (s)	Average amount of output (GB)	Number of jobs
1	RawToDigit	150	35	175 000	26 250	1	10 000
2	DigitToDst	30	1	175 000	5 250	0,6	10 000
3	GenToSim	60	2	175 000	10 500	8	300
4	SimToDst	30	8	175 000	5 250	1	300
5	DstToAna	10	1	175 000	1 750	0,1	1 000
Experimental data processing Model data processing							
raw	digit	dst	analysis	gen	sim	dst	analysis
	15.12.202	0		AYSS-2020)		6

AYSS-2020

15.12.2020

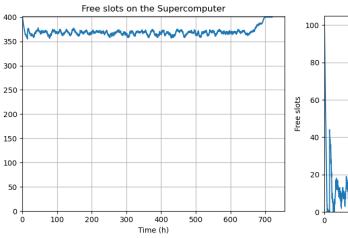

Scenarios for executing jobs

N∘	Class	Location of jobs performed / % of jobs				
N⊻		Scenario 1	Scenario 2			
1	RawToDigit	NCX LHEP / 40% T2 LIT / 45% Supercomputer / 15%	NCX LHEP / 50% T2 LIT / 15% Supercomputer / 35%			
2	DigitToDst	NCX LHEP / 40% T2 LIT / 45% Supercomputer / 15%	NCX LHEP / 50% T2 LIT / 15% Supercomputer / 35%			
15.	.12.2020	AYSS-2020	8			

Results of Scenario 1

<u>Total</u> <u>number</u> RawToDigit jobs – **10 000** DigitToDst jobs – **10 000**

<u>LHEP farm:</u> **500 slots** RawToDigit – **4 000 (40%)** DigitToDst – **4 000 (40%)**



- 400 slots are free
- There are not jobs queues
- The farm is not fully loaded

<u>T2 LIT farm:</u> **100 slots** RawToDigit – **4 500 (45%)** DigitToDst – **4 500 (45%)**

Free slots on the LIT T2 farm

- 350 slots are free
- There are not jobs queues
- The Supercomputer is not fully loaded
- The T2 LIT farm is fully loaded

400

Time (h)

500

600

700

300

 There are jobs queues

200

100

We can process more jobs on the LHEP farm and Supercomputer

Solution: to redistribute the number of jobs across compute nodes of data center

15.12.2020

Results of Scenario 2

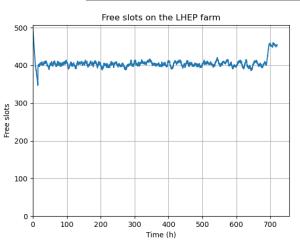
<u>Total</u> number

100

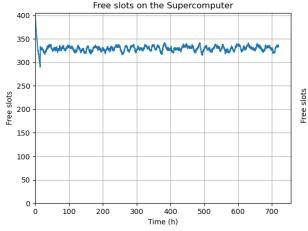
80

60

20


0

100


RawToDigit jobs – **10 000** DigitToDst jobs – **10 000**

<u>LHEP farm:</u> **500 slots** RawToDigit – **5 000 (50%)** DigitToDst – **5 000 (50%)** <u>Supercomputer:</u> 400 slots RawToDigit – 3 500 (35%) DigitToDst – 3 500 (35%) <u>T2 LIT farm:</u> 100 slots RawToDigit – 1 500 (15%) DigitToDst – 1 500 (15%)

Free slots on the LIT T2 farm

- 350 slots are free
- There are not jobs queues
- The farm is not fully loaded

- 250 slots are free
- There are not jobs queues
- The Supercomputer is not fully loaded
- All jobs were processed in 400 hours

300

400

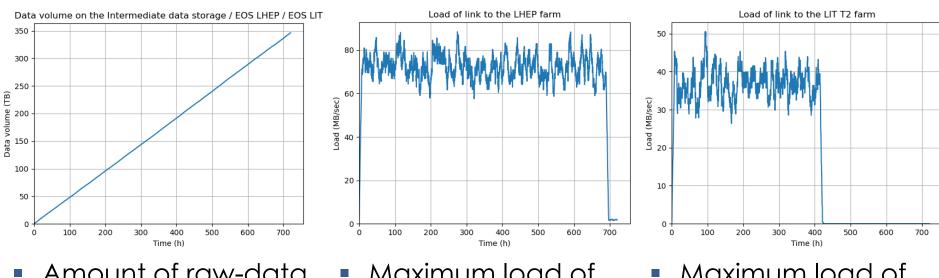
Time (h)

500

600

700

 There are jobs queues


200

We can process more jobs on the LHEP farm and Supercomputer

The results require additional research

15.12.2020

Total results

- Amount of raw-data per session – 350 TB
- Maximum load of link to the LHEP farm – 90 MB / sec
- Maximum load of link to the LIT farm – 50 MB / sec

Conclusions and Outlook

- Developed a tool for simulating data acquisition, storage and processing systems.
- Based on the simulation results, it is possible to predict the load of compute nodes, data pools and communication links.
- Modeling of 2 primary processing scenarios (executing RawToDigit and DigitToDst jobs).

> Next steps:

- including other types of jobs (GenToSim, SimToDst, DstToAna) in the described scenarios;
- modeling other possible scenarios for executing jobs;
- adding % of jobs completion (now 100% completion);
- adding probability of equipment failure and recovery time;
- the probabilities of loss of incoming information.

Thank you for the attention!

D.PRIAKHINA

V.TROFIMOV, G.OSOSKOV, K.GERTSENBERGER

