Development of the Electron string ion sources thermometry systems

Ponkin Dmitry
LHEP JINR senior engineer
on behalf of the NICA acceleration division

Dubna, 9-13 November 2020

NICA injection complex

Heavy ion injection

Heavy ion source KRION 6T

Ions produced and injected: ${ }^{78} \mathrm{Kr}^{17+}{ }^{124} \mathrm{Xe}^{41+}{ }^{40} \mathrm{Ar}^{16+}{ }^{12} \mathrm{C}^{6+}$

- 5.4 T SC solenoid
- E inj. up to 25 kV
- electron string
- cryogenic
- highly charged ions
- unique technology

$55^{\text {th }}$ Nuclotron run, 2018

Интенсивность в кольце и поле

NICA injector
$55^{\text {th }}$ Nuclotron run (2018)

NICA

EBIS = Electron Beam Ion Source

History

-Invented by E.D. Donets at JINR,Dubna in 1968. Au ${ }^{19+}$ beam in 1969.
-1970-1985, in Dubna, cryogenic version of EBIS KRION-I,2, bare ions C, N, O, Ne, Ar, Kr, Xe. HCI physics begins.
-1970-1985, Europe, US, Japan, a lot of EBIS (EBIS time), $\mathbf{U}^{\mathbf{9 0 +}}$!
-1982, at Bekerley, EBIT, from EBIS, 1990s, SuperEBIT, U ${ }^{92+}$!

- Since 1985, in accelerator fields, ECRIS time
-2001-2005, breakthrough of EBIS at JINR, new idea of ESIS, and high current EBIS at BNL.

Prof. E.D. Donets near Krion-6T ESIS during Nuclotron run \#55, JINR, Dubna, February 2018

EBIS = Electron Beam Ion Source

ESIS $=$ EBIS in electron reflex mode of operation

B,T

ESIS KRION 6T electronics

- vacuum

Slow

- ion optics supply control
- HV electrodes
- electron gun supply
- Synchronization
- thermometry

Ion motion control system

- DC barrier modules pulsed barriers modules extraction modules interface modules drift structure divider

Beam diagnostics

- beam profile monitor
- oscilloscopes
- ion collectors
- ToF system
- indused signals

Cryogenic measurements:

- cryogenic sensors (precision, stability)
- sensor wiring and connection
- meas. electronics
- current source
- signal shielding

$$
\underline{U}=I R, R=U / I
$$

Thermometry => superconducting solenoid

TBO* resistor:

- heat resistant
$\begin{aligned} & \text { - } \quad \text { heat resistant } \\ & \text { - } \quad \text { voisture resistant }\end{aligned} \quad T=\sum_{n=1}^{m} K_{n} \cdot\left(\frac{R_{0}}{R_{t}}\right)^{n-1}$

KRION 6T

superconducting solenoid
T sensor

Slow control => thermometry

TBO* resistor:
heat resistant moisture resistant volume

Advantages

- PoE: less wires needed
- precision
- Modbus RTU/over TCP
- modular (3U case)
- robust \& cost-effective
- on-board current source

The design process

》

«Cool»

 resistor

The embedded system web interface

PKT-8 CRYOGENIC TEMPERATURE MEASUREMENT MODULE WEB INTERFACE

Measurements	channel	R, Ohm	T, K
	1	112.25	0.00
Device settings			
	2	254.43	0.00
Coefficients			
	3	349.29	0.00
Network settings	4	403.82	0.00
LHEP	5	550.51	0.00
	6	677.76	0.00
	7	942.45	0.00
Last Update: 11:50:50	8	1229.42	0.00

PKT-8 CDVOAENic trmnenatine menalinement MODULE

R, Ohm
Measurements
 $T x=8352706: \mathrm{Err}=0: \mathrm{ID}=100: \mathrm{F}=03: \mathrm{SR}=0 \mathrm{~ms}$

		Alias	01000
	11218		\wedge
1000		-	
1001		25434	
1002		--	
1003			
1003			

112.18

Device settings

Coefficients

Network settings

WEB

Modbus TCP

WEB INTERFACE

筫 Modbus Poll - [web_revozmbp]

Web interface + Modbus

Slow control => thermometry

ПОДКЛЮЧЕН

ИЗМЕРЕНИЯ [К]	АЦП	ГРАФИК
Конец соленоида	294,02	\square
Середина соленоида	294,63	\checkmark
Перемычка	294,38	\square
Кольцо спаев 1	296,24	\square
Кольцо спаев 2	293,96	\square
Шина	296,06	\square

Конец сол/спаи dT:
\square
Больше 40 K ? \square

Сопротивление, Ом

Конец соленоида	1013,02
Сер. соленоида	1024,64
Перемычка	933,77
Кольцо спаев	1017,87
	1061,05
	1108,74

C:\Users\дима\Desktop\Tермо Крион2\/og files\LogFile_05.02.2018_17h18m56s.txt
TEMПEPATYPA, K

Slow control => thermometry

(9) Мнемосхема трубчатого источника ионов

Slow control => thermometry

Summary

- ESIS Krion 6T successfully produced beams for the Nuclotron runs in 2014 and 2018, all the electronic systems were developed and works fine
- The thermometry system including electronics, sensors, wiring etc is a complicated system. It is complex and interesting
- The designed electronics is a powerful device with, can be used in other parts of the accelerator complex
- The design is done by a young engineers group, it has 2 diploma work and several study practices
- We are ready for the new designs
- We can offer the device for your cryogenic or precision meas.

problem:

unique facilities => unique electronics*

We are ready for collaboration in any technical questions email: ponkin@jinr.ru

Thank you!

7. KRION-6T on the test bench

Specifications of KRION-6T

Length of the superconducting solenoid
Number of layers
Induction
Current in the solenoid
Field on the axis in the middle (Bmax)
Length of the main ion trap
Maximum energy of the electrons
Emitter material
Electron current from the gun
Capacity of the ion trap

1,2 m
24 layers
$\sim 10 \mathrm{H}$
90 A (105 A planned)
5,4 T (6T planned)
1 m
10 keV (11,5 keV with trap potential lift) IrCe
up to 30 mA
up to 22 nC

8. Results achieved on the test bench

- the jт ionization factor is the most important value giving information about the performance of the ESIS
- impossible to measure directly the electron string current, but possible to measure effective jт, using the extracted ions spectrum.

Ion specious	Effective electron string current density $\mathbf{j}, \mathrm{A} / \mathrm{cm}^{2}$
Kr^{15+}	665
Kr^{18+}	591
$\mathrm{Kr}^{24,6+}$	847
$\mathrm{Xe}^{23,2+}$	1090
$\mathrm{Xe}^{24,9+}$	1579
$\mathrm{Xe}^{25,4+}$	1587
$\mathrm{Tm}^{40,8+}$	1092

Examples of number of particles per pulse and times of ionization for different ions

C^{4+}	7×10^{9}	-
Xe^{42+}	5×10^{9}	350 ms
Xe^{32+}	-	40 ms
Tm^{50+}	3×10^{7}	-
Au^{33+}	-	30 ms

The new KRION-6T ion source has much higher effective \mathbf{j} (up to $1600 \mathrm{~A} / \mathrm{cm}^{2}$) in comparison with the KRION-2 which had only $200 \mathrm{~A} / \mathrm{cm}^{2}$. Another typical EBIS devices have only $100-300 \mathrm{~A} / \mathrm{cm}^{2}$.

9. KRION-6T connected to the accelerator

- First time KRION-6T was in operation at Nuclotron at 50 th run in May-June 2014 The intensity of the Ar^{16+} beam was $3,9 \times 10^{7} \mathrm{ppp}$.

KRION-6T on the high voltage platform of the LU-20

