Radiation hardness tests of GaAs and Si sensors at JINR

S.M. Shakour JINR, Dubna, Russia

2017

Gallium arsenide as a detector material

- GaAs is a well-known semiconductor, second widespread after silicon
- Limited use in particle detection because of low resistivity, low CCE and high intrinsic noise
- New modification of GaAs, compensated by Cr (GaAs:Cr), has been invented in Tomsk State University in 2000-2005
 - suitable for detector construction
 - radiation hard

- Z(GaAs)~ 32 vs Z(Si)=14 \rightarrow higher photon detection efficiency

Material	main charge carriers	electron drift length	bulk resistivity	active sensor thickness	intrinsic noise
LEC SI-GaAs	holes	0.3-0.5 mm	<2*10 ⁸ Ω*cm	<300 μm	high
GaAs:Cr	electrons	0.7 – 2 mm	~10 ⁹ Ω*cm	up to 1 mm	low

Two types of GaAs:Cr detectors

- 'Resistive' GaAs:Cr
 - resistivity ~10⁹ Om*cm
 - active thickness up to 1 mm
 - electron drift length up to 2 mm

- πv junction structure
 - active thickness is determined by πv junction (~0.1-0.2 mm depending on Ubias)
 - resistivity and CCE is Ok

Summary of previous measurements

- GaAs:Cr detectors based on πv junction structure may have the same or better radiation hardness comparing with the 'resistive' GaAs:Cr
- πv junction structures were never tested systematically in electron beams.
- We never reported (= never systematically studied) the dependence of the radiation degradation on the irradiation rate

GaAs:Cr and Si sensors

Ν	Туре	Holder	Size, x y z, mm	Sensitive area, mm ²
1	GaAs:Cr barrier, n⁺-π-v-n(radiation hard)	Plastic	5x5x0.3	5x5
2	GaAs:Cr high resistive	РСВ	5x5x0.3	4.5x4.5
3	Si n-type	Plastic	5x5x0.3	4x4
4	Si n-type rad-hard sensor from USCS	РСВ	10x10x0.4	4x4

LINAC-800

800 MeV electron linear accelerator (LINAC-800) is under construction at JINR. 20 MeV beam channel was used for sensors irradiation. Beam parameters:

- bunch current up to 10 mA,
- duration 2 ms,
- frequency from 1 to 10 Hz.

Irradiation setup

Irradiation control

The radiation sensitive film was placed behind the sensor to control the absorbed dose, and the uniformity of electron flounce during irradiation.

GEANT 4 simulation

The electron transport through the irradiation setup was simulated by GEANT4 in order to obtain the ratio of registered by Faraday cup charge to absorbed dose in the sensor.

Sensor	Holder	Thickness, um	Energy	Absorbed dose to	Error
			deposit by	charge in Faraday	
			one e, MeV	cap, kGy/uC	
GaAs	Plastic	300	0.2218	5.56	0.04
GaAs	РСВ	300	0.2238	5.61	0.04
Si	Plastic	300	0.1064	6.09	0.06
Si	РСВ	300	0.1066	6.10	0.06

CCE(Charge collection efficiency) measurement set up

electrons from Sr⁹⁰ source well collimated and triggered by 2 scintillators. It allows to cut and measure signal only from electrons passed throw the sensor with energy from 1 to 2.2 MeV which is close to MIP electrons

Installation for CCE and I-V(Volt - Ampere) measurement

All the sensors measured at room temperature, except some measurements at low temperature for Si

Results I-V Si

I-V characteristics of the normal n-type Si (N3) and radiation hard USCS Si (6888).

The dark current increased almost 4 orders of magnitude after the absorbed dose of 1.5 MGy

Results I-V: πv junction structure and HR GaAs:Cr

I-V characteristics of the sensors: high resistive GaAs:Cr (left), πv junction structure GaAs:Cr(right)

Resistivity of GaAs:Cr sensors is about 2-5*10⁹ Ohm*cm, the dark current increased only 3 times for the high resistive and 4-5 times for the barrier GaAs:Cr.

MIP of non irradiated GaAs:Cr sensors

MIP spectrum from Sr⁹⁰ of the HR GaAs (left) and πv junction structure GaAs sensors (right)

GaAs MIP signal vs Dose

GaAs pedestal vs Dose

In GaAs:Cr the CCE drops 5 times even at a dose 0.5 MGy, but then it decreases slowly, keeping about 10% of the initial CCE after dose 1.5 MGy. The width of the pedestal in a GaAs remains practically unchanged.

UCSC Si 6886 MIP vs Dose

The pedestal expands and the signal from pedestal separation becomes difficult after doses 0.5MGy

N-type Si N5 MIP vs Dose

Si vs GaAs 550 kGy

Si N5; 492kGy ; T= 16°C

GaAs N4 barrier; 550kGy ; T =22°C

A slight cooling of the sensor Si for 5°C significantly improves the MIP-signal and pedestal separation, but it is still worse than GaAs:Cr.

Si vs GaAs 1550 kGy

Si 1260 kGy ; T =22°C

GaAs 1550 kGy ; T =22°C

After 1.5 MGy the MIP-signal and the pedestal still separated for GaAs:Cr

Si cooling

Si 602 kGy ; T =20°C

Si 602 kGy ; T =-1°C

Si cooling

Si 1260 kGy ; T =22°C

Si 1698 kGy ; T =-0.7°C

GaAs CCE vs Dose

Si CCE vs Dose CCE 1E+00 · 1E-01 Si N3 Si N5 Si 6886 Si 6888 1E-02 -200 400 600 0 Dose, KGy

Due to increasing of the dark current the pedestal considerably broadened and the measurement becomes difficult for doses higher 0.5 MGy.

GaAs:Cr and Si sensor resolution.

2σ-criterion was applied for a correct comparison of Si and GaAs sensor performance.

K is the ratio of events departed greater than the total number 2 σ from pedestal to the total number of events in MIP-spectrum.

The greater *K*, the better the signal and pedestal are separated in the spectrum.

For the irradiated GaAs sensors CCE increases significant with the field strength up to **20 kV / cm**,

while in the non-irradiated sensors saturation begins at 1 kV/cm

CCE measurements for GaAs and Si under neutron irradiation from IBR 2

Summary

- Irradiation of the high-resistive and barrier GaAs:Cr sensors and the normal and radiationresistant n-type Si sensors by 20 MeV electron beam of was performed.
- Radiation damage in GaAs and Si are different: increasing of the dark current in Si and dropping signal in GaAs.
- A significant difference between two types of GaAs:Cr sensors and two types of Si is not found.
- $2-\sigma$ criterion was applied to separate the signal from the pedestal.
- After dose 1.5 Mgy in GaAs:Cr signal magnitude remains about 10% of initial, when Si is not possible to use at room temperature.