

Conceptual Design Report of the SPD

A. Guskov on behalf of the SPD protocollaboration

17.12.2020

THE NUCLOTRON-BASED ION COLLIDER FACILITY (NICA) PROJECT AT JINR

SPD – EXPERIMENTAL CONDITIONS

Beam energies: $p\uparrow p\uparrow (\sqrt{s_{pp}}) = 12 \div \ge 27 \text{ GeV} (5 \div \ge 12.6 \text{ GeV of proton kinetic energy}),$ $d\uparrow d\uparrow (\sqrt{s_{NN}}) = 4 \div \ge 13.8 \text{ GeV} (2 \div \ge 5.9 \text{ GeV/u of ion kinetic energy}).$

Unique possibility!

All combinations of collisions are possible -UU, LL, TT, UL, UT, LT

SPD – VS OTHERS

Experimental	SPD	RHIC	EIC	AFTER	LHCspin
facility	@NICA			@LHC	
Scientific center	JINR	BNL	BNL	CERN	CERN
Operation mode	collider	collider	collider	fixed	fixed
				target	target
Colliding particles	$p^{\uparrow}-p^{\uparrow}$	$p^{\uparrow}-p^{\uparrow}$	$e^{\uparrow}-p^{\uparrow}, d^{\uparrow}, {}^{3}\mathrm{He}^{\uparrow}$	$p extsf{-}p^\uparrow, d^\uparrow$	p - p^{\uparrow}
& polarization	d^{\uparrow} - d^{\uparrow}				
	p^{\uparrow} - d , p - d^{\uparrow}				
Center-of-mass	≤27 (<i>p</i> - <i>p</i>)	63, 200,	20-140 (ep)	115	115
energy $\sqrt{s_{NN}}$, GeV	≤13.5 (<i>d</i> - <i>d</i>)	500			
	≤19 (<i>p</i> - <i>d</i>)				
Max. luminosity,	~1 (<i>p</i> - <i>p</i>)	2	1000	up to	4.7
$10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	~0.1 (<i>d</i> - <i>d</i>)			${\sim}10(p{\text{-}}p)$	
Physics run	>2025	running	>2030	>2025	>2025

CONCEPT OF THE SPD PHYSICS PROGRAM

SPD - a universal facility for comprehensive study of gluon content in proton and deuteron at large x

Charmonia

Prompt photons

Open charm

Other physics

Other spin-related phenomena

5

SPIN STRUCTURE OF NUCLEON

P

Momentum of proton Spin of proton Spin of parton Transverse momentum of parton

QUARKS	unpolarized	chiral	transverse
U	(f_1)		h_1^{\perp}
L		(g_{1L})	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	$g_{_{1T}}$	$(h_{1T})h_{1T}^{\perp}$

GLUONS	unpolarized	circular	linear
U	$\left(f_{1}^{g}\right)$		$h_{\scriptscriptstyle 1}^{\scriptscriptstyle ot g}$
L		(g_{1L}^g)	$h_{\scriptscriptstyle 1L}^{\scriptscriptstyle \perp g}$
Т	$f_{1T}^{\perp g}$	$m{g}^{g}_{1T}$	$h_{1T}^g, h_{1T}^{\perp g}$

GLUON PROBES AT SPD

MAIN PLAYERS IN POLARIZED GLUON PHYSICS

SPD can cover this range for polarised gluon studies in p↑-p↑ interactions!

open charm

charmonia

high-p_T prompt photons

PARTONIC STRUCTURE OF PROTON AND DEUTERON

EXPECTATIONS FOR SPD ENERGIES

MORE DETAILS ABOUT GLUON PHYSICS AT SPD:

arXiv:2011.15005

On the physics potential to study the gluon content of proton and deuteron at NICA SPD

A. Arbuzov^a, A. Bacchetta^{b,c}, M. Butenschoen^d, F.G. Celiberto^{b,c}, U. D'Alesio^{e,f}, M. Deka^a, I. Denisenko^a,
 M. G. Echevarria^g, A. Efremov^a, N.Ya. Ivanov^{a,h}, A. Guskov^{a,i}, A. Karpishkov^{j,a}, Ya. Klopot^{a,k}, B. A. Kniehl^d,
 A. Kotzinian^{h,m}, S. Kumanoⁿ, J.P. Lansberg^o, Keh-Fei Liu^p, F. Murgia^f, M. Nefedov^j, B. Parsamyan^{a,l,m},
 C. Pisano^{e,f}, M. Radici^c, A. Rymbekova^a, V. Saleev^{j,a}, A. Shipilova^{j,a}, Qin-Tao Song^q, O. Teryaev^a

^aJoint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia ^bDipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy ^cINFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy ^dII. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany ^eDipartimento di Fisica, Università di Cagliari, I-09042 Monserrato, Italy ^fINFN Sezione di Cagliari, I-09042 Monserrato, Italy ⁸Dpto. de Física y Matemáticas, Universidad de Alcalá, 28805 Alcalá de Henares (Madrid), Spain ^hYerevan Physics Institute, 0036 Yerevan, Armenia ⁱMoscow Institute of Physics and Technology, Moscow Region, 141700, Russia ^jSamara National Research University, 443000 Samara, Russia ^kBogolyubov Institute for Theoretical Physics, 03143 Kiev, Ukraine ¹Dipartimento di Fisica, Università di Torino, Via Peitro Giuria 1, 10125 Torino, Italy ^mINFN Sezione di Torino, Via Peitro Giuria 1, 10125 Torino, Italy ⁿInstitute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki, 305-0801, Japan ^oUniversité Paris-Saclay, CNRS, IJCLab, 91405 Orsay, France ^pDepartment of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA ⁹School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China

Submitted to Progress in Particle and Nuclear Physics Journal

PHYSICS OF THE FIRST STAGE OF SPD RUNNING

- Spin effects in p-p, p-d and d-d elastic scattering
- Spin effects in hyperons production
- Multiquark correlations
- Dibaryon resonances
- Physics of light and intermediate nuclei collision
- Exclusive reactions

• • •

- > Open charm and charmonia near threshold
- Auxiliary measurements for astrophysics

SPD SETUP: GENERAL CONDITIONS

lodgement and moving system

Detector mass must be kept No effective muon ID Strong limitation to below 1500 ton together with + with muon system with = geometrical size of the $< 4 \lambda_I$ setup

signal processes

Tiny cross-sections of **+** produced signal heavy No sizable boost for particles like J/ψ , D ...

> $\sim 4\pi$ geometry for all subsystems

Interaction rate up to 4 MHz at 27 GeV

DETECTOR: GENERAL OVERVIEW

MAGNETIC SYSTEM

6 solenoidal coils inside the ECAL:

- compact
- 1 T at the beam axis

Field IBI [kG], Z = 0.000 [cm]

• Z-optimization

40

35

30

25

20

15

10

Field IBI [kG], $\phi = 0.00$ [deg]

VERTEX DETECTOR Two variants: 5 layers of DSSD Endcap DSSD Barrel MAPS Barrel DSSD Endcap MAPS *3 internal layers in barrel replaced by MAPS*

Goals:

- Reconstruction of secondary vertices for D-mesons decay
- Participation in track reconstruction and momentum measurement *Requirements:*
- Spatial resolution <100 μm
- Low material budget
- Has to be installed as close as possible to the IP

STRAW TRACKER

Goals:

- Track reconstruction and momentum measurement
- Participation in PID via *dE/dx* measurement

Requirements:

- Spatial resolution $\sim 150 \ \mu m$
- Low material budget
- Operation in magnetic field of about 1 T

some **R&D** is still needed

PARTICLE IDENTIFICATION SYSTEM

- π/K separation up to ~ 1.5 GeV
- *K*/*p* separation
- t₀ determination

Requirements:

• Time resolution ~60-70 ps

Goals:

- π/K separation up to 2.5 GeV range Requirements:
- We should have enough light!

ELECTROMAGNETIC CALORIMETER

Goals:

- Detection of prompt photons, photons from π^0 , η and χ_c decays
- Identification of electrons and positrons, participation in muon identification Requirements:
- Granularity ~4 cm
- Low energy threshold (\sim 50 MeV)
- Energy resolution ~ $5 \% / \sqrt{E}$

RANGE (MUON) SYSTEM

• should have at least $4\lambda_I$

28

BEAM-BEAM COUNTERS

Goals:

- local (online) polarimetry
- local (online) luminosity monitor
- t₀ determination

Requirements:

- Operation inside the beam pipe (inner part)
- Time resolution ~1 ns (inner) and ~400 ps (outer part)

ZERO-DEGREE CALORIMETERS

LOCAL ONLINE POLARIMETRY

COMPUTING

	CPU [cores]	Disk [PB]	Tape [PB]
Online filter	6000	2	none
Offline computing	30000	5	9 per year

PHYSICS PERFORMANCE: TRACKING AND VERTEXING

TOF (σ_T =70 ps) GeV/c ò sd <u>90 ps</u> √N 20 1.5 15 t₀ reconstruction 10 0.5 5 Λ ^{1.2} m_{rec}, GeV 0 0.2 0.4 0.6 0.8 Κ 10 12 π р N tracks dE/dx [keV/cm] Electrons 10² Pions aons

otans

1

PHYSICS PERFORMANCE: PID

10-1

dE/dx in Straw Tracker (truncated average method)

∆ ∎

 \wedge

PHYSICS PERFORMANCE: CALORIMETRY

PHYSICS PERFORMANCE: GLUON PROBES

PHYSICS PERFORMANCE: ACCURACIES

TENTATIVE RUNNING PLAN

Physics goal	Required time	Experimental conditions	
	First stage	·	Ĵ
Spin effects in <i>p</i> - <i>p</i> scattering	0.3 year	$p_{L,T} - p_{L,T}, \sqrt{s} < 7.5 \text{ GeV}$	
dibaryon resonanses			
Spin effects in <i>p</i> - <i>d</i> scattering,	0.3 year	d_{tensor} - $p, \sqrt{s} < 7.5 \text{ GeV}$	
non-nucleonic structure of deuteron, \bar{p} yield			
Spin effects in <i>d</i> - <i>d</i> scattering hypernuclei	0.3 year	d_{tensor} - d_{tensor} , \sqrt{s} <7.5 GeV	\geq 5 years
Hyperon polarization, SRC,	together with MPD	ions up to Ca	of data taking
multiquarks			
	Second stage	·	
Gluon TMDs,	1 year	$p_T - p_T, \sqrt{s} = 27 \text{ GeV}$	
SSA for light hadrons			
TMD-factorization test, SSA,	1 year	p_T - p_T , 7 GeV< \sqrt{s} <27 GeV	
charm production near threshold, onset of deconfinment, \bar{p} yield		(scan)	
Gluon helicity,	1 year	$p_L - p_L, \sqrt{s} = 27 \text{ GeV}$	
•••			
Gluon transversity,	1 year	d_{tensor} - d_{tensor} , $\sqrt{s_{NN}} = 13.5 \text{ GeV}$	
non-nucleonic structure of deuteron,		or/and? $d_{tensor} p_T$, $\sqrt{s_{NN}} = 19 \text{ GeV}$	
"Tensor porlarized" PDFs			31

.

. .

.

COST ESTIMATION

.

• •

	Subsystem	Option	Cost, M\$
SPD setup	Vertex detector:		
	– DSSD	VD1	9.4+6.5 (FE)
	– DSSD+MAPS	VD2	9.4+7.0 (FE)
	Straw tracker		2.4
	PID system:		
	 – RPC-based TOF 	PID1	5
	 Scintillator-based TOF 	PID2	4
	 Aerogel PID system 	PID3	5
	Electromagnetic		21.1
	calorimeter		
	Range system		14.2
	ZDC		2
	BBC		0.4
	Magnetic system		10
	Beam pipe		2
General infrastructure			5
Slow control system			0.8
Data acquisition system			1.6
Computing			10
TOTAL COST	VD2+PID2+PID3		94.9

+4.5 per year

SUMMARY

- ► We plan the **Spin Physics Detector** at the NICA collider is a **universal facility** for comprehensive study of polarized and unpolarized **gluon content of proton and deuteron**; in polarized high-luminosity **p-p** (up to 10^{32} cm⁻²s⁻¹) and **d-d** collisions at $\sqrt{s} \le 27$ GeV. The wide physics program is also prepared for the first period of running with reduced energy and luminosity.
- > Complementing main probes such as charmonia (J/ ψ and higher states), open charm and prompt photons will be used for that.
- The physics program dictates the layout of the setup: we propose the SPD as a universal 4π detector equipped with the silicon vertex detector, straw tracker, PID system based on TOF and/or aerogel Cherenkov detector, electromagnetic calorimeter, muon (range) system, two beam-beam counters and two zero degree calorimeters.
- ► The performed Monte Carlo study shows that the proposed detector meets the requirements of the physics program.
- ► The proposed physics program covers at least 5 years of data taking.
- ► Preliminary estimation for cost of the SPD setup is 95 M\$.
- ➤ The first version of the Conceptual Design Report is almost ready and will be presented in January 2021 at the winter session of the PAC.