JINR Innovation Radiobiological Research Program

A. N. Bugay

Relative biological effectiveness of charged particles Radiation-induced mutagenesis

JINR since 1959

Radiation risk in deep space

JINR since 1959

JINR since 1967

New concept of radiation risk for deep space flights: Damage to the central nervous system (CNS)

% Risk of cancer death

Paradigm

Radiation Neuroscience

Grygoriev, Krasavin, Ostrovskii,

Bulletin of RAS 2017

Set of equipment for the study of behavioral reactions and functional disorders of the central nervous system of animals

Receiver Antenna and Amplifier

EEG Signal

Electrophysiology studies

New visualization and *methods* tomography tools are foreseen

Study of neuroradioprotective properties of pharmaceuticals

Worldwide unique experiments with monkeys

The monkeys were preliminary trained to solve logical tasks with computer. The effect of exposure by 500 MeV/u ¹²C ions at 1 Gy dose consisted in significant inhibiting cognitive activity of the monkeys.

Later on unique experiment was performed with irradiation of 2 GeV/u 78 Kr ions.

Automated computer system for the simulation of operator activity during the flight

Mechanisms of radiation damage at the molecular, *Boreyko et al*, 2019,2020 Mere

visualization of DNA damage in hippocampal cell culture

DNA damage in rat hippocampus cells 1 hour after exposure to ⁷⁸Kr ion tracks

- Induction and repair of DNA damage:
 - in neural cells (in vitro)
 - in brain structures (in vivo)
- Suppression of neurogenesis
- The role of glial cells: demyelination neuroinflammation carcinogenesis
- Vascular disorders

Source: Bertram G. Katzung, Anthony J. Trevor: Basic & Clinical Pharmacology, 13th Ed.

A link between irradiation and neurodegenerative diseases? *Alzheimer, Parkinson, Epilepsy* ... The relationship between

The relationship between irradiation and aging?

Implementation of OMICs-technologies

Bodrova et al 2012

Genetic and molecular mechanisms of neurodegenerative diseases

Bugay et al, 2019

Chromosome 12 GRIN2B gene

NMDA synaptic receptor

Interconnections between neurons,

U400M (50 MeV/u, Li-Ne)

Nuclotron (0.3-1 GeV/u, H-Kr)

JINR Research Network

Cell cultures molecular damage, genetics, proteomics, imaging, neurochemistry

Animal research cognitive tests, physiology, tomography

LRB

Supercomputing, data analysis, artificial intelligence

Radiation Neuroscience

Main task

study of the mechanisms of radiation-induced disorders in the central nervous system

Space radiobiology

• Radiation physiological studies on mammals and primates, assessment of radiation risks for astronauts

• Research of neuro-radioprotective properties of pharmaceuticals

Brain diseases

- Animal simulation studies of side effects of brain tumors radiation therapy
- Simulation on animals of the development of neurodegenerative diseases under the action of accelerated heavy ions
- Mathematical modeling of genetic and molecular mechanisms of neurodegenerative diseases

Radiation Neuroscience

Expected results

- evaluate functional condition of animal CNS using: behavioral test systems; EEG analysis
- study formation and repair of clustered DNA damage induced by densely ionizing radiation in CNS cells and tissues
- study chromosome aberration induction in bone marrow and blood cells of animals to evaluate long-term consequences of irradiation
- identify neurodegenerative changes, neuroinflammation, apoptotic and necrotic changes, amyloid growths, and vascular pathologies
- study suppression of neurogenesis in the postnatal period
- study radiation-induced immune response in mouse brain homogenates and in glial cell culture
- study the viability of oligodendrocytes and their precursors and the axon myelination level
- study neurochemical mechanisms of CNS disorders
- test on rodents pharmacological drugs concerning the prevention CNS damage caused by radiation
- map gene expression and proteomic changes in main brain regions after irradiation
- map metabolome changes in animal brain after irradiation
- develop a hierarchy of mathematical models to study the mechanisms of neurodegenerative disorders

Clinical Radiobiology

Principles of radiation therapy of cancer

Conformal irradiation

Formation of lethal DNA damage (double strand breaks) in tumor cells

New strategy:

Interference in genetic regulatory networks of irradiated cells with modifiers

DNA double-strand breaks - the molecular basis of cell death

Clustered double-strand break

Interference in genetic regulatory networks of irradiated cells with pharmaceuticals **1-β-D-arabinofuranosylcytosine** (AraC, cytarabine)

Stopping DNA synthesis and forming a double-strand break

Visualization of processes from molecular to organismal level

DSB DNA

merge

Fluorescence immunocytochemistry, single molecule microscopy

Pharmacokinetics

A new method for increasing the biological efficiency of photon and proton beams

Preclinical studies on laboratory animals with transplanted melanoma tumor

Krasavin, Zamulaeva, Kaprin, 2019,2020

Methods of influence on the biochemical networks of cells

Pharmaceuticals

A big variety! Registered for clinical use

DNA synthesis inhibitors, repair inhibitors, cell cycle blockers ...

Transgene systems

The latest biotechnology, high selectivity, targeted delivery is possible, complexity in clinical registration

Direct injection

Artificial compounds

increase energy release when interacting with radiation

Metal nanoparticles, quantum dots, ...

Targeted drug delivery (molecular vectors)

Medulloblastoma tumor (IV stage)

AraC 0.1 mg/ml

+ Ethyl (5 - (benzylthio)-4chloroisothiazole-3 -yl) carbamate (10.0 mg / ml)

Kulchitsky et al. 2012

Nuclear medicine: targeted delivery of radionuclides

Shmakova, Norseev, Krasavin, Kodina et al, 2002

Melanoma tumor cell survival *in vitro*

Nuclear medicine:

targeted delivery of radionuclides

Accumulation of ²¹¹At-MTB in various tissues of the body of animals with inoculated melanoma

Visualization of ¹³¹I-MTB accumulation in tissues of animals with inoculated melanoma

New methods require the development of new therapy planning systems

Monte Carlo simulation, Pharmacokinetics, Visualization

...

JINR Research Network

Cell cultures

Immunofluorescent imaging, single molecule microscopy, flow cytometry, radiation cytogenetics, genomics, proteomics, gene engineering, molecular vectors, drugs, radionuclides, microbeams

Animal research physiology, tumor xenography, tomography

Preclinical research

ель мыши; Радиофармацевтический препарат. сть введённого альбумина: 2,5 МБк; время иш: 1 час 45 минул

Centri

Proton & electron beams,

detectors, collimators,

treatment planning,

development of new

medical cyclotrons

EG-5 Cf neutron source

Supercomputing, data analysis, artificial intelligence

Clinical Radiobiology

Main task:

Development of new breakthrough approaches to improve the effectiveness of radiation and radionuclide therapy of cancer

Radiation Therapy

Development of approaches to increase radiosensitivity by interfering with the work of genetic regulatory networks of the cell :

pharmaceuticals, transgene systems

targeted delivery (molecular vectors)

Nuclear medicine

Development of radionuclide targeted delivery

Preclinical animal research Development of new treatment plans

Clinical Radiobiology

Expected results

- molecular radiobiological studies of the mechanisms modifying the cell regulatory networks in response to radiation: DNA damage induction, DNA repair, apoptosis, bioinformatics analysis with omics-technologies
- investigation and testing of new **pharmaceuticals** and specially designed **transgene systems**
- development and testing of methods for targeted delivery of drugs and radiopharmaceuticals
- research of new methods of radiation therapy on laboratory animals with transplanted tumors
- investigation of autopsy material of tumor formations: the number of cancer stem cells (CSC), the proliferative activity of tumor cells, tumor vascularization, cell cycle control and proliferation, stem state, epithelial-mesenchymal transition, cell death, angiogenesis, and immune response
- development and application of cytogenetic methods for assessing long-term effects of radiation therapy
- assessment of the negative effects of radiation therapy on the CNS: simulation on animal models
- elaboration of new schemes for planning and verification of therapy
- preclinical studies and transfer of innovation technologies to clinical centers

Collaboration with JINR Member States and Associate Members

YSU, CANDLE SRC YerPhI IMB NAS RA

Inst. Physiol. NASB IBCE NASB SPMRC NASB

IE BAS NCRRP Inst. Microbiol. BAS Inst. Mol. Biol. BAS

INPC VAST ITRRE VINATOM

NUM

IBMP RAS SINP MSU **ISR RAS** IMP RAS **IHNA RAS** SF IPh I.P. Pavlov Inst. Physiol. RAS M.V. Lomonosov MSU IBMC Skoltech NMRRC (Obninsk) FMBA FMBC N.N. Blokhin NMRCO

Cooperation with International Research Centers

International biophysics collaboration, since 2019

Main members:

REVIEW published: 16 October 2020 doi: 10.3389/fphy.2020.00380

Biomedical Research Programs at Present and Future High-Energy Particle Accelerators

Vincenzo Patera¹, Yolanda Prezado², Faical Azaiez³, Giuseppe Battistoni⁴, Diego Bettoni⁵, Sytze Brandenburg^{6†}, Aleksandr Bugay⁷, Giacomo Cuttone⁸, Denis Dauvergne⁹, Gilles de France¹⁰, Christian Graeff¹¹, Thomas Haberer¹², Taku Inaniwa¹³, Sebastien Incerti¹⁴, Elena Nasonova⁷, Alahari Navin¹⁰, Marco Pullia¹⁵, Sandro Rossi¹⁵, Charlot Vandevoorde³ and Marco Durante^{11,16*}

OPEN ACCESS

Edited by:

Zhen Cheng, Stanford University, United States

Reviewed by:

Lucio Rossi, European Organization for Nuclear Research (CERN), Switzerland Silvia Capuani, National Research Council (CNR), Italy ¹ Dipartimento di Scienze di Base e Applicate per l'Ingegneria, University "La Sapienza", Rome, Italy, ² Institut Curle, University Paris Saclay, Orsay, France, ³ IThemba LABS, NRF, Cape Town, South Africa, ⁴ TIFPA, INFN, Trento, Italy, ⁵ LNL, INFN, Legnaro, Italy, ⁶ KVI-CART, University of Groningen, Groningen, Netherlands, ⁷ JINR, Dubna, Russia, ⁸ LNS, INFN, Catania, Italy, ⁸ Université Grenoble-Alpes, CNRS/IN2P3, UMR5821, LPSC, GDR MI2B, LabEx PRIMES, Grenoble, France, ¹⁰ GANIL, Caen, France, ¹¹ Biophysics Department, GSI Heimholtzzentrum für Schwerlonenforschung, Darmstadt, Germany, ¹² HIT, University of Heidelberg, Heidelberg, Germany, ¹³ NIRS, OST, Chiba, Japan, ¹⁴ Université de Bordeaux, CNRS/IN2P3, UMR5797, Centre d'Études Nucléaires de Bordeaux Gradignan, Gradignan, France, ¹⁵ CNAO, Pavia, Italy, ¹⁸ Institut für Festkörperphysik, Technische Universität Darmstadt, Darmstadt, Germany

Thank you for your attention!