# Время-пролетная система спектрометра Гипер-НИС

Аверьянов А.В., Авраменко С.А., Аксиненко В.Д., Баева А.Н., Герценбергер С.В., Голохвастов А.И., Короткова А.М., Кривенков Д.О., Лукстиньш Ю., <u>Максимчук А.И.,</u> Охрименко О.В., Парфенова Н.Г., Пляшкевич С.Н., Салмин Р.А., Строковский Е.А., Фещенко А.А.

16.02.2017

# Цели и задачи эксперимента:

- поиск легчайших нейтроно-избыточных гиперядер, в частности <sup>6</sup><sub>л</sub>*H*, рожденных при взаимодействии пучка релятивистских ядер <sup>7</sup>*Li* с углеродной мишенью;

- измерение времени жизни и величины сечения рождения данных гиперядер.

$${}^{7}Li + {}^{12}C \rightarrow {}^{6}_{\Lambda}H + p_{frag} + K^{+}$$
  
$$\downarrow {}^{6}He + \pi^{-},$$

Импульсы пионов - продуктов распада исследуемых гиперядер планируется измерить *методом времени пролета*, используя соотношение:

$$p = m \cdot \left(\frac{\tau^2}{\tau_0^2} - 1\right)^{-\frac{1}{2}}$$

Результаты моделирования показывают, что использование *метода времени пролета* для измерения импульсов пионов обеспечивает достаточную точность реконструкции масс гиперядер.

Импульсное (левая панель) и угловое (правая панель) распределение регистрируемых пионов. Распределение по реконструированной эффективной массе регистрируемого гиперядра (нижняя панель)



# Схема спектрометра ГиперНИС



Длина времяпролетной базы – 4.5 метра.

Сигнал "старт" — пластиковый сцинтилляционный счетчик (размер 50×50×15 мм). Сигнал "стоп" — годоскоп резистивных плоских камер (РПК), 48 каналов регистрации. Площадь активной зоны годоскопа - 1.54 м<sup>2</sup>.

#### Схема стартового счетчика

ФЭУ с двух противоположных сторон сцинтилляционного счетчика необходимы для того, чтобы убрать зависимость разрешения счетчика от координаты попадания пучковой частицы.



# Конструкция РПК



Газовая смесь: 90%  $C_2F_4H_2$ , 5%  $SF_6$  и 5%  $C_4H_{10}$ 

# Система газового обеспечения годоскопа из РПК



А1-А3 – регулятор расхода газа РРГ12, КЭ1-КЭ3 – клапан электромагнитный





Блоки управления газовой панелью и электромагнитными клапанами



Газовая панель в сборе

Система газового обеспечения

# Калибровка регуляторов расхода газа (РРГ-12)



# Система обеспечения высоковольтного питания РПК



Система обеспечения высоковольтного питания РПК – HVSys.



HVSys позволяет удаленно управлять высоковольтным питанием годоскопа РПК

| - HVSYS                                     |         |          |         |               |           |         |           |                        |                         |                          |    |  | $ +$ $\times$ |  |
|---------------------------------------------|---------|----------|---------|---------------|-----------|---------|-----------|------------------------|-------------------------|--------------------------|----|--|---------------|--|
| ALL ON/OFF                                  | LOAI    | D ALL DI | ETECTED | ED CELLS SAVE |           |         | CONFIG    |                        | Mon M                   | Mon Mar 02 10:01:52 2015 |    |  |               |  |
| LV0 [V]                                     | LV1 [V] |          |         | LV2           |           | LV3 [V] |           |                        | No External HV Blocking |                          |    |  |               |  |
| 0.0                                         | 0.0 0.0 |          |         | 0.0           |           |         | 0.0       |                        |                         |                          |    |  |               |  |
| BV ON                                       |         | BV1 [V]  |         | ⊟ BV          | 2 [V]     | Ĩ       | 🗆 BV3 [V] |                        |                         |                          |    |  |               |  |
| 0.0                                         | (       | 0.0      |         | 0.0           |           |         | 0.0       |                        |                         | BV Protection OK         |    |  |               |  |
| ВО                                          |         |          |         |               |           |         |           |                        |                         |                          |    |  |               |  |
| 1 2 3 4 5                                   | 6 7     | 8 9      | 10 11   | 12 13         | 14 15     | 16 17   | 18 1      | 9 20                   | 21 22                   | 23 24                    |    |  |               |  |
| المراجع المراجع                             | Í       |          |         |               |           |         |           | Î.                     |                         |                          |    |  |               |  |
|                                             |         |          |         |               |           |         |           |                        |                         |                          |    |  |               |  |
|                                             |         |          |         |               |           |         |           |                        |                         |                          |    |  |               |  |
|                                             |         |          |         |               |           |         |           |                        |                         |                          |    |  |               |  |
| GEN ON GEN OFF                              |         |          |         | 0x02 Fr AFr   |           |         |           | ★ LOAD PARAMETERS      |                         |                          |    |  |               |  |
| JEN ON JEN                                  |         |          |         |               |           |         |           | FOR ALL DETECTED CELLS |                         |                          |    |  |               |  |
| SET U[V] (1875-7499)                        | 5900    |          | 5999    | Û             |           | Ŷ       |           |                        | SE                      | T U [V]                  |    |  | 5900          |  |
| Ustb[V] (1875-7499)                         | 0       |          | 2001    |               | Standi    | BY      |           | SET U StB [V]          |                         |                          |    |  | 0             |  |
| SET I Lim [mkA]                             | 100     |          | 99.9    |               | I Lim     | Ê.      |           |                        | SET I                   | Lim (mk                  | A) |  | 100           |  |
| READ U [V]                                  |         | 025      | RE      | AD I (mi      | (A) 0.000 |         |           | SET U RUMP UP          |                         |                          |    |  | 0             |  |
| 1/(RUMP UP slew rate) [25ms/step] (0-255)   |         |          |         |               | 0         | • 4     |           |                        | SET U                   | T U RUMP DN              |    |  | 0             |  |
| 1/(RUMP DOWN slew rate) [25ms/step] (0-255) |         |          |         |               |           | • 4     |           | SET I Protect Del      |                         |                          |    |  | 10            |  |
| I Protection Delay [*50ms] (0-255)          |         |          |         |               |           | 10      |           |                        |                         |                          |    |  |               |  |

# Блок-схема системы сбора и обработки данных от времяпролетных детекторов



# Модуль TQDC-16



Измерения амплитуды сигналов от стартового счетчика и «падов» RPC, а также времени их появления, производятся модулями TQDC-16 VME. Модуль TQDC-16 является время-зарядовым 16-канальным преобразователем со встроенной коррекцией амплитуды и триггерной логикой.

Модули TQDC-16 в крейте



TDC: Измерение времени с шагом 25 пс ADC: 14bit, шаг дискретизации 12нс Диапазон входного сигнала: ±270 мВ

# Стартовый счетчик



Временное разрешение стартового счетчика ~ 150 пс

Схема измерений эффективности РПК



# Кривая эффективности РПК

Эффективность выходит на плато при -5.7кВ и для всех «падов» в среднем равна 95%.



# Схема измерений характеристик РПК на пучке Нуклотрона



# Амплитудный спектр сигналов от РПК



Распределение амплитуд сигналов исследуемых падов РПК для углеродного (красная линия) и дейтонного (синяя линия) пучков

# Измерения временного разрешения РПК на пучке углерода



 $T_{RPC1-RPC2} = T_{RPC1} - T_{RPC2}$ 

Собственное временное разрешение «пада» РПК без коррекции зависимости «время-амплитуда» ≈ 590 пс.



# Коррекция зависимости «амплитуда-время» (углеродный пучок)



Временное разрешение РПК после коррекции (на пучке углерода)



Собственное временное разрешение «пада» РПК после коррекции ≈ 160 пс.

#### Измерения временного разрешения РПК на пучке дейтронов



Зависимость времени прихода сигнала от амплитуды (слева) и коррекция зависимости «амплитуда-заряд» (справа)

Временное разрешение РПК после коррекции



$$\sigma_{RPC} \approx 190 \, ps$$

Временное разрешение времяпролетной системы (разность времен приходов сигналов от стартового счетчика и соответствующего «пада» РПК)



$$T_{TOF} = T_{start} - T_{RPC}$$

 $\sigma_{TOF} \approx 250 \, ps$ 

# Заключение

-В данной работе были исследованы характеристики детекторов время-пролетной системы установки ГиперНИС на дейтроном и углеродном пучках Нуклотрона и космических частицах;

- Рассмотрен метод амплитудно-временной коррекции, позволяющий улучшить временное разрешение РПК в 3,5 раза;

Измерены основные характеристики детекторов:
эффективность ~ 95%
временное разрешение ~ 250 пс

- Измеренные характеристики детекторов удовлетворяют требованиям, поставленным перед время-пролетной системой спектрометра.