
Introduction to Cosmology

Alexey Toporensky

February 1, 2021



The Friedmann -Robertson-Walker (FRW) metrics reads

ds2 = dt2 − a2(t)dχ2 − a2(t)dΩ2

What it is possible to say about distances and velocities in an
expanding Universe?
Tamara M. Davis, Charles H. Lineweaver, Expanding Confusion:
common misconceptions of cosmological horizons and the
superluminal expansion of the Universe, astro-ph/0310808.
Examples of misconceptions or easily misinterpreted statements in
the literature:
1. Feynman, R. P. 1995, Feynman Lectures on Gravitation
(1962/63), (Reading, Mass.: AddisonWesley) p. 181.
2. Rindler, W. 1956, MNRAS, 6, 662-667, Visual Horizons in
World-Models.
3. McVittie, G. C. 1974, QJRAS, 15, 246-263.
4. Weinberg, S. 1977, The First Three Minutes, (New York:
Bantum Books), p. 27.
...
25. McVittie, G. C. 1974, QJRAS, 15(1), 246–263.



Setting an observer in the origine of the coordinate system we get
the proper distance between the observer and a distant point with
the radial comoving coordinate χ for the t = const hypersurface in
the form l = aχ.
Similary, we can define a velocity of the Hubble flow as

v = dl/dt = ȧχ = (ȧ/a)aχ = Hl

so that for the proper distance and velocity ”now” the Hubble law
is en exact law for the Friedmann metric. The velocity v can not
be measured directly, so it can be considered as an unphysical
entity. In general, it is not bounded from above.
To choose correct and physically reasonable definition of V (i), we
use the tetrad formalism. Then, motion of a massive particle is
subluminal, so the absolute value of the vector V (i) is less than 1.
If a particle has four-velocities uµ, and the observer reference
frame is described by the tetrad field h(i)µ, then there is a standard
definition of three-velocity

V (i) = −
uµh(i)µ

hµ(0)uµ
.



In cosmology a velocity with respect to a comoving observer is
usually called a peculiar velocity. Since the corresponding tetrad is

h(i)µ = diag(−1, a, aχ, aχ sin θ),

for the 3-velocity of a particle with 4-velocity uµ we have for the
radial component of a peculiar velocity

Vr = auχ/ut = adχ/dt.

The consent of a peculiar velocity is a local one, however, the
radial component allows for a nice non-local interpretation.
Namely, the rate of change of a proper distance between the
coordinate origin and a distant point l = aχ is

dl

dt
=

d(aχ)

dt
= χ

da

dt
+ a

dχ

dt
= vH + Vr

where vH = χȧ = (χa)ȧ/a = lH is the velocity of the Hubble flow.
The left hand side of this equation can be considered as a
reasonable definition of a velocity of a distant object (more
precisely, its radial part) which is an intrinsically non-local entity.



The above equation means that the overall change of a proper
distance to a distant point is naturally decomposed into a sum of
the velocity of the cosmological flow and the radial part of a
peculiar velocity. Note that summation rule is of the Galileo type
independently of velocity values. We see that in spite of non-local
nature of this equation as a whole as well as the Hubble flow
velocity vH , the second term in the right hand side has a local
interpretation.
The same statement can be done for the velocity of light which
always equals to c locally, but for a light in a distant point we have
vl = vH + c or vl = vH − c depending on the direction of light. It
can be shown by the same chain of equalities noting that the
coordinate velocity of light in the FRW metric dχ/dt = c/a.
Let us go closer to observational perspective. We can not directly
measure the coordinate χ. What we do measure is the redshift. If
a light have been emitted when the scale factor was aem and have
been observed at a0, we have 1 + z = a0/aem.
The simplest way to obtain the redshift in the FRW metric is to
use the conformal time, η. Defining η(t) =

∫
dt/a we reduce the



metric to the form

ds2 = a2(dχ2 − dη2).

Assuming χobs = 0 we obtain χem = ηobs − ηem. Here, subscripts
“obs” and “em” refer to an observer and emitter, respectively. If a
signal was emitted during a period ∆η, then it is observed during
the same interval of conformal time. However, physical time
intervals at two moments are different: ∆tem = a(tem)∆η and
∆tobs = a(tobs)∆η. Thus, ∆tem/∆tobs = a(tem)/a(tobs), where
we neglected the change of the scale factor during the processes of
emission and observation.
This method uses particular properties of the FRW metric and can
not be generalized. The most general method one can often find in
textbooks uses null geodesics.
Let us then consider two pulses of an electromagnetic wave. They
are emitted in two moments of time tem1, tem2 and observed,
correspondingly, at tobs1 and tobs2. Both are emitted by a galaxy
at χem. The observer is situated at χobs .
If an emitter and an observer follow the geodesic lines, their values
of χ remain fixed. World lines of the two photons are:



χem − χobs = c

∫ tobs1

tem1

a−1dt,

χem − χobs = c

∫ tobs2

tem2

a−1dt.

Then: ∫ tobs1

tem1

a−1dt −
∫ tobs2

tem2

a−1dt = 0.

This equation can be rewritten in the equivalent form∫ tobs2

tobs1

a−1dt −
∫ tem2

tem1

a−1dt = 0.

Neglecting changes in a during the interval of emission of the two
pulses, and during the interval of their observation (i.e. putting
a(tem1) = a(tem2) and a(tobs1) = a(tobs2)), we obtain

tobs2 − tobs1
a(tobs)

− tem2 − tem1

a(tem)
= 0.



At emission λem = c(tem2 − tem1). At observation
λobs = c(tobs2 − tobs1). Therefore,

λem/a(tem) = λobs/a(tobs).

Finally, we come to the usual expression for the cosmological
redshift.
Now let us derive the equation for the cosmological redshift using
velocities. Here we will use the fact that two light pulses, being at
slightly different distances from an observer, have different
velocities with respect to this observer since the light approaches
the observer with the velocity vl = c − vH . Therefore, let us
consider two pulses of a light wave directed toward an observer,
separated by a spatial distance ∆r = λ. This radial difference
results in the velocity difference with respect to the observer
∆v = H∆r . This means that the velocity of the pulse which is
closer to the observer is less than the velocity of the pulse which is
behind it. Due to this difference, the distance between these pulses
changes and we can construct a differential equation

d∆r/dt = H∆r .



After obvious calculations using the definition of the Hubble
parameter H = ȧ/a we obtain that the ratio of wavelengths at tem
and the moment of observation, tobs , is equal to the ratio of scale
factors at these moments: λem/λobs = aem/aobs . This is the
standard result for the cosmological redshift.
The advantage of this method is that it can be applied to
inhomogeneous metrics also, if we work in synchronous coordinate
system. In the paper
A. Toporensky, O. Zaslavskii, S. Popov, Unified approach to
redshift in cosmological /black hole spacetimes and synchronous
frame, Eur. J. Phys. 39, 015601 (2018)
this method have been used to derive a redshift for a spherically
symmetric black hole in a ”cosmological” matter, without any
reference to the gravitational time delay. This means that it is not
necessary to consider the cosmological redshift as a special class of
redshifts, but as the gravitational redshift calculated in a
synchronous frame.



Now we express distances and velocities in terms of z instead of χ.
We see the light now with the redshift z if is have been emitted at

χ =

∫
cdt

a
=

c

a0

∫
dz

H(z)

If we consider the dynamics as a ∼ t1/α, so that α = 0 corresponds
to de Sitter Universe, α = 3/2 is the dust Universe and α = 2 is
the radiation Universe, then

χ =
c

a0H0

1

1− α
[(1 + z)1−α − 1].

So that, the proper distance to an object observed with the
redshift z is now

lnow =
c

(1− α)H0
[(1 + z)1−α − 1]

Correspondingly, at the time of emission the proper distance was
equal to

lem = lnow/(1 + z)



For the velocity of an object within the Hubble flow we have now

vnow =
c

1− α
[(1 + z)1−α − 1]

and at the time of emission

vem =
c

1− α
[1− (1 + z)α−1]

If an emitter has non-zero radial peculiar velocity vr , then the
combined redshift is

1 + z = (1 + zc)(1 + zD)

where zc is the cosmological redshift, and zD is the standard

Doppler shift (1 + zD) =
√

1+v/c
1−v/c . As zc and zD depend upon

velocities in a different manners, the redshift of an object with
constant proper distance to it is, in general, nonzero.
Moreover, there is no general formula for cosmological redshift as a
function of the recession velocity, since the redshift depends upon
the whole dynamical history of the Universe between the points of
emission and observation.



Apart from these definitions of distance and velocity, entering in
the Hubble law, there are other definitions. From an empirical
point of view, it is useful to define an angular dA an photometric
dph distances as distances to a source which would have,
correspondingly, the same angular size or the same observed energy
flux when measured in the Minkowski space. If the physical size
and luminosity of the object are known, these distances can be
measured directly.
In the Friedmann Universe the angular distance coinsides with the
proper distance at emission, dA = lem, as for the photometric
distance, it is connected with the angular distance as
dph = (1 + z)2dA and this formula is a universal one.
Using the above formula for proper distance at emission we see
that in the Friedmann Universe with α > 0 the angular distance
depends upon redshift non-monotonically, having a maximal value.
For example, in the dust Universe (α = 3/2) angular distance has a
maximum at z = 5/4. Since dA = lem this means that for z > 5/4
objects with bigger z were closer to us at the time of emission.



Figure:

We see that:
superluminal recession ⇔ non-monotonic dA(z).



It should be noted that dA = lem does not mean that ḋA = vem
since apparent velocity differs from the physical one because the
speed of light is finite. The correct formula is

ḋA = vem/(1 + z)

An interesting effect which could be observable in a near future:
the redshift drift.

z(to) =
a(to)

a(te)
− 1

and

z(to + ∆to) =
a(to + ∆to)

a(te + ∆te)
− 1

which gives us after the expansion at first order in ∆t/t

∆z = ∆to(
ȧ(to)− ȧ(te)

a(te)
).

In terms of Hubble parameter it can be rewritten as

∆z

∆to
= H0(1 + z − He

H0
)



If we go back to the formula for the proper distance at emission as
a function of H and z , take a derivative with respect to time, use
the formulae for H(t) and ż , we get exactly vem/(1 + z).
There is one more distance measure, the light travel distance,
which is equal to a distance which the light would travel in
Minkowski space-time for a given time interval: dl = c∆t. In a
popular literature this measure is usually expressed in light-years.
Obviously, in an expanding Universe lem < dl < lnow . Simple
geometric considerations show that ḋl is directly connected with
the redshift:

ḋl =
cz

z + 1



We now turn to other proposal for the velocity which uses
completely different ideas. Intuitively, let us ”transfer” the velocity
from a distant point to the location of an observer. The parallel
transport on a Riemannian manifold is a well-defined mathematical
object. However, we can not apply it directly to velocities since
they are 3-dimensional objects. We can make the parallel transport
of 4-vector using appropriate connections (General Relativity in its
standard from uses Levi-Civita connections, we use them in the
present paper and will comment about other choice later), so to
start the procedure we take 4-velocity of a distant object and
transport it to the observer point. Then, we restore 3-velocity
using transported 4-velocity and 4-velocity of the observer. One
property of such definition is clear – any 3-velocity obtained by this
procedure is subluminal (a hypothetical superluminal 3-velocity
would correspond to imaginary 4-velocity vector which can not be
a result of parallel transport of any real 4-velocity vector).
However, the procedure is still not fixed completely since for
Levi-Civita connection the result of parallel transport depends on
the path. What path is better to specify? One proposal is to chose



a null geodesics between the emitter and observer. This proposal
does not require any additional structures, like particular foliation
of space-time. In this sense it can be applied to any space-time.
Moreover, 3-velocity defined this way is exactly the velocity which
produces in a flat space-time the same redshift as the observer sees
in curved space-time.
Informal prove: let us express the redshift through the energy ratio
of emitted and observed photons

1 + z =
(kµU

µ)e
(kµUµ)o

Then transport emitter values to the point of observation. The
scalar product does not change, as for individual meaning of the
variables, note that the wave vector at the point of emission (kµ)e
is transported along null geodesics and thus gives the wave vector
at the point of observation (kµ)o . As for 4-velocity of emitter, it
gives some transported value Ũµ. After that, the standard formula
expressing z through 3-velocity Ṽ can be got exactly the same way
as in Special Relativity.
There are however, arguments against this chose. Usually in



physically interesting situations we assume some foliation by
hypersurfaces of constant time. The emitter sent the light at some
time t1 which is earlier than the time when the observer received it
t2. This means that the velocity obtained from parallel transport
along the light path has a meaning of an average (in some sense)
velocity in between t1 and t2. To construct a velocity at particular
time t we need to transfer 4-velocity along the line t = const – if
we consider only radial motion, the line of parallel transport is fully
specified. Explicit calculations of such a velocity vt for FRW
Universe have been done in
M. Chodorowski, The kinematic component of the cosmological
redshift MNRAS, 413, 585 (2011)
where it was shown that it is connected with the Hubble law
velocity by a simple formula

vt = tanh vH/c.

Later, this formula have been generalised to any sperically
symmetric static space-times in
E.Emtsova, A. Toporensky, Velocities of distant objects in General
Relativity revisited, Gravitation and Cosmology, 26, 50 (2020).



The solution for Friedmann equation if the Universe is filled by a
standard matter with the pressure proportional to the energy
density p = ωε, ω = const:

a ∼ t
2

3(1+ω)

and
ε ∼ a−3(1+ω)

This means that for a mixture the bigger is ω the rapidly energy
density of this component falls. So that, during cosmological
expansion the effective ω decreases, and the power index α in
a ∼ tα increases. This means that the transition Radiation - Dust
- de Sitter is natural.
However, the transition from an early acceleration to later
decceleration needs special efforts. We should abandon the
condition ω = const. In the matter content of the Universe is a
scalar field φ , then



3Mpl

8π
H2 =

φ̇2

2
+ V (φ)

and
φ̈+ 3Hφ̇+ V ′(φ) = 0

and for large H we can neglect φ̇ in the first equation and φ̈ in the
second one. So that, the equations in the slow-roll approximation
are

φ̇ = − V ′

3H

and

H2 =
8π

3Mpl
V

The ”slow-roll” should not be considered ”too literally”. For the
quadratic scalar field potential we indeed have a slow rolling with
the constant φ̇. However, for V = λφ4 the equations show that
φ̇ ∼ φ which results in an exponential decay of the scalar field.


