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Introduction

I Quantum cosmology is a description of the universe as a
unique quantum object.

I It is important from the point of view of the unification of
gravity and quantum field theory.

I Quantum cosmology is connected with the inflationary
cosmology.

I Mathematical structure of quantum cosmology is similar
to that of theories of strings and superstrings.

I There is a connection between quantum cosmology and
the foundations of quantum theory.



Interpretations of Quantum Mechanics and Quantum

Cosmology
I Quantum mechanics and more generally quantum theory

(including quantum statistical mechanics and quantum
field theory) have had great achievements in the
description of the microworld.

I The main feature of quantum mechanics, which
distinguishes it from classical Newton mechanics is the
fact, that even if one has a complete knowledge of a state
of a system under consideration and would like to make a
certain experiment, more than one alternative result of
such an experiment is possible.

I The knowledge of the state of the system can permit us
only to calculate the probabilities of different outcomes of
the experiment.



I How can we see only one outcome of an experiment and
what happens with all other alternatives?

I How can we reconcile ourselves with the fact that the
physics of the microworld is described by quantum
mechanics while in the macroworld, which we perceive in
our everyday experience we encounter the laws of classical
physics?

I Copenhagen interpretation: existence of the so called
classical realm, where all the results of experiments and
observations were registered.

I Classical physics was considered not only as a limiting
case of the quantum physics, but also as a pre-requisite of
its very existence.

I In quantum mechanics coexist two processes.

I A unitary deterministic evolution of the wave function,
describing the quantum system, according to the
Schrödinger equation.



I The second process takes place during quantum
measurement and is called the reduction of the wave
function.

I Is it possible to restore the classical determinism in
quantum mechanics?

I De Broglie-Bohm interpretation: behind the curtain there
are classical evolutions and trajectories, but we cannot
know which one we follow.

I Hugh Everett’s many-worlds interpretation of quantum
mechanics: there is only one process: unitary evolution
according to the Schrödinger equation. There is no
reduction of the wave function.

I There is universal wave function or the wave function of
the universe.

I It could be very well combined with the spirit of quantum
cosmology.



I All the outcomes of the experiment co-exist and the
objective result of the measurement under consideration
is the establishment of correlations between the measured
and measuring subsystems, which are treated on equal
footing.

I The Everett interpretation of quantum mechanics is quite
logical and economical, however, this economy was
achieved by means of the acceptance of parallel existence
of different outcomes of a quantum measurement.

I The many-worlds interpretation of quantum mechanics
has become more popular due to the successes of
cosmology and quantum informatics.



The problem of the preferred basis in the

many-worlds interpretation of quantum mechanics

The very essence of the many-worlds interpretation can be
expressed by one simple formula.

Û |Φ〉0|Ψ〉i = |Φ〉i |Ψ〉i .

The state |Ψ〉i is a quantum state of the object corresponding
to a definite outcome of the experiment, |Φ〉0 is an initial state
of the measuring device. The process of interaction between
these two subsystems can be described by a unitary operator
Û .



Let the initial state of the object be described by a
superposition of quantum states:

|Ψ〉 =
∑
i

ci |Ψ〉i .

Then the superposition principle leads to

Û |Φ〉0|Ψ〉 = Û |Φ〉0
∑
i

ci |Ψ〉i =
∑
i

ci |Φ〉iΨ〉i .

|Φ〉i describes the state of the measuring device, which has
found the quantum object in the state |Ψ〉i .
All the terms of the superposition are realized but in different
universes.



Decomposing the wave function of the universe one should
choose a certain basis. The result of the decomposition
essentially depends on it. Thus, the so called problem of the
choice of the preferred basis arises.

Schmidt or bi-orthogonal basis

The essence of the problem can be formulated considering a
quantum system consisting of two subsystems. The only
essential characteristic of the branching process is the
defactorization of the wave function.
Initially,

|Ψ〉 = |φ〉|χ〉.

after an interaction between the subsystems∑
i

ci |φ〉i |χ〉i ,

where more than one coefficient ci is different from zero.



The decomposition can be done in various manners.
The Schmidt or bi-orthogonal basis is formed by eigenvectors
of both the density matrices of the subsystems of the quantum
system.

ρ̂I = TrII |Ψ〉〈Ψ|,

ρ̂II = TrI |Ψ〉〈Ψ|.

The eigenvalues of the density matrices coincide and hence
the number of non-zero eigenvalues is the same.

ρ̂I |φn〉 = λn|φn〉,

ρ̂II |χn〉 = λn|χn〉.

|Ψ〉 =
∑
n

√
λn|φn〉|χn〉.



The bi-orthogonal basis is defined by the fixing of the
decomposition of the system into subsystems.

The decomposition into the subsystems should be such that
the corresponding preferred basis would be rather stable.

For example, when one treats a quantum mechanical
experiment of the Stern-Gerlach type, it is natural to consider
the measuring device and the atom as subsystems.

In the case when we consider a system with some kind of
internal symmetry, like in quantum chromodynamics, the
division of the system into subsystems which belong to singlet
representations of the internal symmetry group looks also
reasonable from the point of view of stability of the
bi-orthogonal preferred basis of the many-worlds interpretation.



Dynamics of the preferred basis

The wave function

|Ψ〉 =
∑
n

cn|n〉I |n〉II .

satisfies the Schrödinger equation

i
∂|Ψ(t)〉
∂t

= H |Ψ(t)〉,

H = HI + HII + V ,

where V is the interaction Hamiltonian between the
subsystems.



One can show that the evolution of the preferred basis vectors
is unitary and is governed by some effective Hamiltonians:

i
∂

∂t
|m〉I = HI |m〉I ,

HI = i
∑
m

(
∂|m〉I
∂t

I 〈m|
)
.

Non-diagonal elements of HI are given by

(HI)mn = (HI )mn − I 〈m|TrII [V , |Ψ〉〈Ψ|]|n〉I
pm − pn

,

and, similarly, for HII . The diagonal elements can be fixed as

(HI )mm = (HI )mm; (HII )mm = (HII )mm,

whence it follows that

i
∂cn
∂t

= I 〈n|II 〈n|V |Ψ〉.



The effective Hamiltonians turn out to be complicated
functionals not only of the Hamiltonian H , but also of the
quantum state |Ψ〉 of the system.

The most unexpected conclusion from the unitary dynamics of
the proposed basis: Since the observer (identified, for example,
with the subsystem I ) observes and measures only one relative
state of the second subsystem II in his many-worlds branch, he
finds that this state undergoes a unitary evolution of the
above type. This is in spite of the impure nature of this open
subsystem II described by a non-factorizable density matrix.

The second conclusion: the observer studying the dynamics of
his relative state measures the effective Hamiltonian HII and
not the fundamental Hamiltonian H of the total system. This
means that research into nature at the most fundamental levels
requires additional efforts in reconstructing the fundamental
dynamical laws on the grounds of the observable reality.



Decoherence

Let us consider the Stern-Gerlach experiment, where the initial
state of the atom and of the device is described by the vector

|Ψ〉 = |Φ〉(c1|ψ↑〉+ c2|ψ↓〉).

As a result of the measurement, we have

|Ψ〉final = c1|Φ↑〉|ψ↑〉+ c2|Φ↓〉|ψ↓〉.

In every measurement process a third system participates - it
is the environment. Hence, the initial state of the general
system is

|Ψ〉 = |χ〉|Φ〉(c1|ψ↑〉+ c2|ψ↓〉),



while its final state is

|Ψ〉final = c1|χ↑〉|Φ↑〉|ψ↑〉+ c2|χ↓〉|Φ↓〉|ψ↓〉.

If we calculate the reduced density matrix tracing out the
environmental degrees of freedom, we obtain

ρreduced = Tr{χ}|Ψ〉final final〈Ψ|
= |c1|2|Φ↑〉〈Φ↑|ψ↑〉〈ψ↑|+ |c2|2|Φ↓〉〈Φ↓|ψ↓〉〈ψ↓|,

where we have used the fact that

〈χ↑|χ↓〉 = 0.



This expression represents a classical statistical mixture, which
substitutes the quantum state due to tracing out the
environmental degrees of freedom.
This is the essence of the decoherence approach.
In many cases this reduced density matrix becomes quickly
practically diagonal in a certain “good” basis, whose states are
sometimes called “pointer states” and behaves more or less
classically.
From our point of view the decoherence approach to the
problem of quantum measurement and to the problem of
classical-quantum relations is less fundamental than the
many-worlds approach.



First, the transition to a classical statistical mixture does not
resolve the problem of choice between different alternatives.
Second, the decoherence properties of reduced density matrix
depend crucially on the choice of the basis.
In the bi-orthogonal preferred basis approach, the basis is
defined by the chosen decomposition of the system under
consideration into subsystems.
After that, one can study the dynamics of different elements
of the basis and to see if they behave classically.
It appears, that sometimes classicality exists as a stable
phenomenon, sometimes as a temporary phenomenon and
sometimes it does not exist at all.



Decoherence and ultraviolet divergences in quantum

cosmology

What is the environment in quantum cosmology?
There is no external environment, because the object of
quantum cosmology is the whole Universe.
We should treat some part of degrees of freedom as essential
and observable, while the others could be treated as an
environment with subsequent tracing them out in transition to
a reduced density matrix.
It is natural to believe that inhomogeneous degrees of freedom
play the role of environment while macroscopic variables such
as a cosmological radius or initial value of the inflaton scalar
field are treated as observables.



What is a quantum state (wave function) of the Universe?
General Relativity is the theory with the constraints (just like
electrodynamics or Yang-Mills theory).
Making the Legendre transformation to come from the
Lagrange formalism to the Hamilton formalism, one discovers
that the Hamiltonian of the General Relativity is proportional a
linear combination of constraints.
According to Dirac we should require that the quantum state
of the system under consideration is eliminated by the
constraint operators.
In quantum cosmology it implies the existence of the
Wheeler-DeWitt equation:

Ĥ |Ψ〉 = 0.



The Wheeler-DeWitt equation is very complicated.
There are relatively simple prescriptions for its solutions - the
no-boundary prescription and the tunneling prescription.

ds2 = (N2 − NaN
a)dt2 − 2Nidx

adt − gabdx
adxb.

Arnowitt-Deser-Misner formalism.
The lapse function N and the shift function Na are Lagrange
multipliers. To this multipliers correspond the constraints:

H = Gabcdπ
abπcd −√g 3R ,

where

Gabcd =
1

2

√
g(gacgbd + gadgbc − gabgcd),

is called the DeWitt supermetric,



πab are the conjugate momenta corresponding to the metric
components gab.
Sometimes H is called super-Hamiltonian.
To the shift functions corresponds the constraints

Ha = −2gacπ
cd
|d .

They describe the invariance of the action with respect to
spatial diffeomorphisms and are called supermomenta.
Quantization:

π̂ab = −i~ δ

δgab
.



The Hamiltonian is proportional to the linear combination of
the constraints and vanishes on the constraint surface.
The time vanishes.
It is called the problem of time.
The formal solution of the Wheeler-DeWitt equation can be
represented as a path integral.
One can use there the Euclidean action.
As is known one can describe the quantum tunneling using
classical equations of motions in the Euclidean time -
instantons.
One can describe the the quantum birth of the Universe as a
tunneling from nothing.



It is convenient to write both the no-boundary and tunneling
cosmological wave functions in the form:

Ψ(t|ϕ, f ) =
1√
v ∗ϕ(t)

exp
(
∓I (ϕ)/2+iS(t, ϕ)

)
×
∏
n

ψn(t, ϕ|fn),

ψn(t, ϕ|fn) =
1√
v ∗n (t)

exp

(
−1

2
Ωn(t)f 2

n

)
,

Ωn(t) = −ak(t)
v̇ ∗n (t)

v ∗n (t)
.

The sign minus or plus in front of Euclidean action I (ϕ) in
the exponential corresponds to the no-boundary and to the
tunneling wave functions of the Universe, respectively, fn
describe amplitudes of inhomogeneous modes, vn correspond
to solutions of linearized second-order differential equations.



The diagonal of the reduced density matrix corresponding to
this wave function

ρ(t|ϕ) ≡ ρ(t|ϕ, ϕ) =

∫ ∏
n

dfn|Ψ(t|ϕ, f ) |2

is

ρ(t|ϕ) =

√
∆ϕ

|vϕ(t)|
exp
(
∓ I (ϕ)− Γ1−loop(ϕ)

)
,

where
∆ϕ ≡ iak(v ∗ϕv̇ϕ − v̇ ∗ϕvϕ).

is the Wronskian of the ϕ-mode functions and Γ1−loop is the
one-loop effective action calculated on the DeSitter instanton
of the radius 1/H(ϕ), where H(ϕ) is the effective Hubble
constant.



When H(ϕ)→∞,

Γ1−loop = Z ln
H(ϕ)

µ
,

where Z is the anomalous scaling of the theory, µ is a
renormalization scale.
The condition of the normalizability of the wave function of
the Universe is

Z > 1.

This condition provides us with the selection criterium for
particle physics models.



Information about the decoherence behaviour of the system is
contained in the off-diagonal elements of the density matrix.

ρ(t|ϕ, ϕ′) =

(
∆ϕ∆ϕ′

vϕv ∗ϕ′

) 1
4

exp

(
−1

2
Γ − 1

2
Γ ′ + i(S − S ′)

)
D(t|ϕ, ϕ′).

Here D(t|ϕ, ϕ′) is the so called decoherence factor:

D(t|ϕ, ϕ′) =
∏
n

(
4ReΩnReΩ′∗n
(Ωn + Ω′∗n )2

) 1
4
(
vnv

′∗
n

v ∗n v
′
n

) 1
4

.

How to cope with ultraviolet divergences appearing in the
sum of this type?



One can try to use the dimensional regularization.
The main effect of the dimensional regularization consists in
changing the number of degrees of freedom involved in
summation.
For example, for a scalar field, the degeneracy number of
harmonics in spacetime of dimensionality d changes from the
well-known value

dim(n, 4) = n2,

to

dim(n, d) =
(2n + d − 4)Γ (n + d − 3)

Γ (n)Γ (d − 1)
.



Making analytical continuation and discarding the poles
1/(d − 4) one has finite values for D(t|ϕ, ϕ′).
However, for scalar, photon and graviton fields one gets an
oversubtraction of UV-infinities:

|D(t|ϕ, ϕ′)| → ∞, at |ϕ− ϕ′| → ∞.

For example, for a massive scalar field

ln |D(t|ϕ, ϕ′)| ≈ 7

64
m3ā(a − a′)2,

a =
1

H(ϕ)
coshH(ϕ)t,

a′ =
1

H(ϕ′)
coshH(ϕ′)t,

ā =
a + a′

2
.



Such a form of a decoherence factor not only does not
correspond to decoherence, but also renders the density matrix
ill-defined, breaking the condition Tr(ρ2) ≤ 1.
Using the reparametrization of a bosonic scalar field

f → f̃ = aµf , vn → ṽn = aµvn,

one can get the new form of the frequency function

Ωn(t) = −ia3−2µ(t)
˙̃v ∗n (t)

ṽ ∗n (t)
.

In such a way one can suppress ultraviolet divergences.
For the conformal parametrization, µ = 1, for the massive
scalar field one has

ln |D̃(t|ϕ, ϕ′)| = −m3πā(a − a′)2

64
.



For the case of fermions this trick does not work.
The wave function of the Universe filled by fermions has the
form

Ψ(t, ϕ|x , y) = Ψ0(t, ϕ)
∏
n

ψn(t|xn, yn),

where x , y are Grassmann variables.
Partial wave functions have the form

ψn(t|xn, yn) = vn −
i v̇n + νvn

m
xnyn,

where the functions vn satisfy the second-order equation

v̈n + (−i ν̇ + m2 + ν2)vn = 0, ν =
n + 1

2

a
.



|D(a, ϕ|a′, ϕ′)| = exp

(
−m2(a − a′)2

8

∑
n=1

n(n + 1)(
n + 1

2

)2

)
.

One can try eliminating ultraviolet divergences by dimensional
regularization using the fact that for spinors in spacetime of
dimensionality d :

dim(n, d) =
Γ (n + 2(d−2))Γ (n + 2(d−2)/2 − 1)

[Γ (2(d−2)/2)]2Γ (n + 1)Γ (n)
.

|D(a, ϕ|a′, ϕ′)| = exp

(
−m2(a − a′)2

8
I

)
, I < 0,

and we encounter the same problem as in the case of bosons.



One cannot use the conformal reparametrization in this case
because standard fermion variables are already presented in
the conformal parametrization.
However, there is another way to circumvent this problem.
One can perform a non-local Bogoliubov transformation
mixing Grassmann variables x and y .
Choosing it in a certain way one can suppress ultraviolet
divergences.
The reasonable idea is to fix this transformation by the
requirement that decoherence is absent in a static spacetime.
Then:

|D(a, ϕ|a′, ϕ′)| = exp

(
−π

2m2(a − a′)2

192
I

)
, I > 0,

and is finite.



The main conclusion to be drawn from the above examples is
the fact that consistency of the reduced density matrix might
determine the very definition of the environment in quantum
cosmology.



Classical - quantum duality
Speaking about the problem of time in quantum cosmology
and generally, in quantum mechanics, one can remember that
some analogue of the classical time can be introduced even in
a system with one degree of freedom.
Let us consider a particle with one spatial coordinate and a
stable probability distribution for this coordinate.
One can suppose that behind this probability distribution there
is a classical motion which we can observe stroboscopically.
We can detect its position many times and obtain a probability
distribution for this position.
Classically this measured probability is inversely proportional to
the velocity of the particle.
The higher is the velocity of a particle in some region of the
space the lesser is the time that it spends there.



In quantum mechanics this probability is given by the squared
modulus of its wave function.

ψ∗(x)ψ(x) =
1

|v(x)|T
,

where T is a normalising time scale, for example, a half
period of the motion of the particle.
In this spirit, the probability distributions for the energy
eigenstates of the hydrogen atom with a large principal
quantum number n were studied.
It was shown that the distributions with the orbital quantum
number l having the maximal possible value l = n − 1,
describe the corresponding classical motion of the electron on
the circular orbit.



In contrast, the state with l = 0 cannot produce immediately a
correct classical limit.
To arrive at such a limit, which represents a classical radial
motion of a particle (i.e. on a degenerate ellipse) one should
apply a coarse-graining procedure based on the Riemann -
Lebesgue theorem.

There is another interesting example: the harmonic oscillator
with a large value of the quantum number n. In this case,
making a coarse-graining of the probability density one can
again reproduce a classical motion of the oscillator.



When one studies the question of the classical-quantum
correspondence, one looks for situations where this
correspondence is realised.
However, it is reasonable to suppose that such situations are
not always realised.
We would like to attract attention to another phenomenon: a
particular quantum-classical duality between the systems
governed by different Hamiltonians.
Let us suppose that we have a classical motion of the
harmonic oscillator, governed by the law

x(t) = x0 sinωt.

The velocity is
ẋ(t) = ωx0 cosωt.



We can believe that behind this classical motion there is a
stationary wave function

ψ(x) =
1√

π(x2
0 − x2)1/4

e if (x)θ(x2
0 − x2),

where θ is the Heaviside theta-function and f is a real
function.
Applying the energy conservation law and the stationary
Schrödinger equation we find the corresponding potential for
the quantum problem:

V (x) =
mω2x2

0

2
+

~2

2m

(
1

2(x2
0 − x2)

+
5x2

4(x2
0 − x2)2

+if ′′ + if ′
x

x2
0 − x2

− f ′2
)
,

if x2 < x2
0 .



To guarantee the reality of the potential and, hence, the
hermiticity of the Hamiltonian, we must choose the phase
function f such that

f ′ = C
√
x2

0 − x2,

where C is a real constant.
Then the potential is equal to

V (x) =
mω2x2

0

2

+
~2

2m

(
1

2(x2
0 − x2)

+
5x2

4(x2
0 − x2)2

+ C 2(x2 − x2
0 )

)
,

if x2 < x2
0 .

Then for x2 > x2
0 we can treat the value of the potential as

infinite since there the wave function is zero.



This example is rather artificial.

We have elaborated it to hint at the possibility of encountering
a similar effect in cosmology.

One can imagine a situation where behind the visible classical
evolution of the universe looms a quantum system, whose
Hamiltonian is quite different from the classical Hamiltonian
governing this visible classical evolution.



Many-worlds interpretation, probabilities and

Anthropic Principle

The probability treatment of the predictions of quantum
mechanics is quite natural when one speaks about multiple
experiments or about multiple identical systems.
What sense can it have when one considers the Universe as a
whole?
Can we say that one branch of the wave function of the
Universe is more probable than another?
Here arises the idea to combine the many-worlds interpretation
of quantum mechanics with the Anthropic Principle.
At first glance, one can think that the many-worlds
interpretation is “anti-anthropic” because it deprives a human
being of its privileged position in the Universe.



It can be combined quite harmoniously with the anthropic
principle and cosmology.
The Universe is described by a unique wave function, which is
adequate to a quantum reality where all possible versions of
the evolution are realized.
In some of the branches of the wave function of the universe
not only the classical properties, but also the Life and Mind
arise, while in other there is nothing similar.
Thus, the world described by our branch of the wave function
exists not because it had to arise because of some necessity,
but because it was possible and all the possibilities are realized.
It is not necessary to require that our world and other similar
worlds are the most probable from the point of view of the
measure on the Hilbert space, where the wave function of the
Universe is defined.
It could be just in the opposite way.
Just like Life is localized in a rather small part of the usual
space, it could be localized in a tiny part of the Hilbert space.



However, it does not mean that everything is possible!

The requirements of consistency of theories can impose rather
stringent restrictions on the concrete physical laws which
govern dynamics in all possible branches of the wave function
of the universe.



Density matrix of the universe and the cosmological

bootstrap

What if the absence of quantum coherence is fundamentally
encoded in the quantum state of the Universe?
In other words, a fundamental quantum state of the Universe
is mixed and is described by a cosmological density matrix?



Such a state can arise in the framework of the Euclidean
Quantum Gravity path integral.
A mixed state of the universe arises naturally if there exists an
instanton with two turning points (surfaces of vanishing
external curvature). Such an instanton naturally arises if one
considers a closed Friedmann universe with the following two
essential ingredients: effective cosmological constant and
radiation corresponding to the set of conformally invariant
quantum fields.



The Euclidean Friedmann equation in this case is

ȧ2

a2
=

1

a2
− H2 − C

a4
,

where H2 = Λ/3 is an effective cosmological constant and the
constant C characterizes the amount of radiation in the
universe.
The turning points for solutions of this equation are

a± =
1√
2H

√
1± (1− 4CH2)1/2, 4CH2 ≤ 1.



! !’

Figure: Picture of instanton representing the density matrix.
Dashed lines depict the Lorentzian Universe nucleating from the
instanton at the minimal surfaces Σ and Σ′.



For the pure quantum state the instanton bridge between Σ
and Σ′ breaks down. However, the radiation stress tensor
prevents these half instantons from decoupling – the minimal
value a− stays nonzero.

! !’

Figure: Density matrix of the pure Hartle-Hawking state
represented by the union of two no-boundary vacuum instantons.



The relevant density matrix is the path integral over metric
and matter field histories interpolating between their boundary
values at Σ and Σ′,

ρ[ϕ, ϕ′ ] = eΓ
∫

g , φ

∣∣
Σ,Σ′

= (ϕ,ϕ′)

D[ g , φ ] exp
(
− SE[ g , φ ]

)
.

Here SE[ g , φ ] is the Euclidean action of the model.
The partition function e−Γ for this density matrix follows from
integrating out the field ϕ in the coincidence limit of its
two-point kernel at ϕ′ = ϕ.
This corresponds to the identification of Σ′ and Σ, the
underlying Euclidean spacetime acquiring the “donut”
topology S1 × S3.
The semiclassical saddle point of the path integral for e−Γ is
just the instanton of the above type.



The metric of this instanton is conformally equivalent to the
metric of the Einstein static universe:

ds2 = dη2 + d2Ω(3),

where η is the conformal time related to the cosmic time τ by
the relation dη = dτ/a(τ).
This opens the possibility of exact calculations for conformally
invariant quantum fields, because their effective action on this
minisuperspace background is exhausted by the contribution of
the conformal anomaly, relevant Casimir energy and free
energy.
At the quantum level the Friedmann equation gets modified to

ȧ2

a2
+ B

(
1

2

ȧ4

a4
− ȧ2

a4

)
=

1

a2
− H2 − C

a4
,

where the amount of radiation constant C is given by the
bootstrap equation



m2
PC = m2

P

B

2
+

dF (η)

dη
≡ B

2
m2

P +
∑
ω

ω

eωη − 1
.

Here F (η) is the free energy which for the conformally
coupled scalar field is given by the series of terms contributed
by field-theoretical oscillators with frequencies ω/a(τ) on a
3-sphere of the radius a(τ)

F (η) =
∑
ω

ln
(
1− e−ωη

)
=
∞∑
n=1

n2 ln
(
1− e−nη

)
.

Here η is the period of the cosmological instanton in units of
the conformal time – effective inverse temperature of the gas
of conformal particles. The constant B = β/8π2M2

P here
describes the contribution associated with the conformal
anomaly and Casimir energy of the model, where β is a
dimensionless coefficient of the Gauss-Bonnet term of the
stress tensor trace anomaly. Similar expressions hold for other
conformally invariant fields of higher spins.



We have obtained a highly non-trivial system of equations.
While the geometry of the instanton depends on the amount
of radiation through the modified Friedmann equation, the
amount of radiation, in turn, depends on the parameters of the
instanton. We called this phenomenon “cosmological
bootstrap”.
The Friedmann equation can be rewritten as

ȧ2 =

√
(a2 − B)2

B2
+

2H2

B
(a2

+ − a2)(a2 − a2
−)− (a2 − B)

B

and has the same two turning points a± as in the classical
case provided

a2
− ≥ B .



This requirement is equivalent to

C ≥ B − B2H2, BH2 ≤ 1

2
.

Together with CH2 ≤ 1/4 the admissible domain for
instantons on a two-dimensional plane of C and H2 reduces to
the curvilinear wedge below the hyperbola and above the
straight line to the left of the critical point:

C =
B

2
, H2 =

1

2B
.

More detailed analysis shows that cosmological instantons
form one-parameter families classified by the number of
oscillations of the scale factor during the instanton time period
k = 1, 2, .... Because of these oscillations they can be called
garlands.



1/2B

B/2

B

k=3

k=2

H
2

C

k = 1

k=4

Figure: The instanton domain in the (H2,C )-plane is located
between bold segments of the upper hyperbolic boundary and
lower straight line boundary. The first one-parameter family of
instantons is labeled by k = 1. Families of garlands are
qualitatively shown for k = 2, 3, 4. (1/2B,B/2) is the critical point
of accumulation of the infinite sequence of garland families.



The suggested approach allows one to resolve the problem of
the so-called infrared catastrophe for the no-boundary state of
the Universe based on the Hartle-Hawking instanton.
The Euclidean action on this instanton is negative and
inversely proportional to the value of the effective cosmological
constant.
This means that the probability of the universe creation with
an infinitely big size is infinitely high.
The effect of conformal anomaly allows one to avoid this
counter-intuitive conclusion.
One can construct instantons with one turning point which
smoothly closes at a− = 0 with ȧ(τ−) = 1.
Such instantons correspond to the Hartle-Hawking pure
quantum state.
The on-shell effective action

Γ0 = F (η)− ηdF (η)

dη
+ 4m2

P

∫ a+

a−

daȧ

a

(
B − a2 − Bȧ2

3

)
,

diverges to plus infinity.



Indeed, for a− = 0 and ȧ− = 1

η =

∫ a+

0

da

ȧa
=∞, F (∞) = F ′(∞) = 0,

and the effective Euclidean action diverges at the lower limit
to +∞.

Γ0 = +∞, exp(−Γ0) = 0,

and this fact completely rules out all pure-state instantons,
and only mixed quantum states of the universe with finite
values of the effective Euclidean action Γ0 turn out to be
admissible.
This is a dynamical mechanism of selection of mixed states in
the cosmological ensemble described by the density matrix.



All the references can be found in the paper by
A. O. Barvinsky and A.Yu. Kamenshchik,
Preferred basis, decoherence and a quantum state of the
Universe,
arXiv:2006.16812[gr-qc],
to be published in the Springer series ”Fundamental Theories
of Physics”, in the volume, dedicated to the memory of H. D.
Zeh.



Are classical physics and cosmology deterministic?

Let us consider a simple mechanical model: Norton’s Dome.
A classical point particle finds itself at some maximum of the
potential

V = V0 − V1x
3
2 , V0 > 0, V1 > 0.

To such a potential corresponds a surface which is not
spherical but has some kind of cusp at the top.
The second Newton law for the particle is

ẍ =
3

2
V1x

1
2 .



Obviously, we have a solution:

x(t) = 0.

There is also a whole family of nontrivial solutions:

x(t) =
V1

64
(t − t0)4.

Here t0 is the moment of the beginning of the motion “rolling
down” of the particle.
There is no reason to begin falling at t = t0 and there is no
probability interpretation here.

John D. Norton (November 2003), “Causation as Folk
Science”, Philosophers’ Imprint. 3 (4): 122.
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It was possible also to have the potential

V = V0 − V1x
α, V0 > 0, V1 > 0, 1 < α < 2.

Then we have two solutions:

x(t) = 0

and

x(t) =

(
V1

α− 1

) 1
2−α

(t − t0)
2

2−α .



Norton’s Dome and cosmology

V. Husain and V. Tasic,
“An Indeterminate Universe: Dark Energy and Norton’s
Dome”,
arXiv:2011.01450
The Friedmann equations for a flat universe filled with a
perfect fluid with

p = wρ, −1 > w > −2

3

are written in such a form that they are nonsingular at a = 0
and permit both the solutions a(t) = 0 and

a(t) = a0(t − t0)
2

3(1+w) .

At w = −5
6
, one has a perfect analogy with the Norton’s

Dome.



The first Friedmann equation was written in such a form:

ȧ = Ca−
3w+1

2 .

and not in the form

ȧ2

a2
=

C 2

a3(w+1)
.



In the paper
V. Gorini, A. Y. Kamenshchik, U. Moschella and V. Pasquier,
Tachyons, scalar fields and cosmology,
Phys. Rev. D 69, 123512 (2004)
we have had quite similar differential equation.
In the flat Friedmann universe we have a tachyon field (i.e.
Born-Infeld field) with the Lagrangian

L = −V (T )
√

1− Ṫ 2.

The energy density is

ρ =
V (T )√
1− Ṫ 2

.



The pressure is

p = −V (T )
√

1− Ṫ 2.

Let us introduce
s ≡ Ṫ .

Then the Klein-Gordon equation is

ṡ

1− s2
+ 3

ȧ

a
s +

V,T
V (T )

= 0.

At s = 1, we have a singularity.
In the vicinity of the singularity

s = 1− s̃,

where s̃ satisfies the equation



˙̃s = As̃3/4, A = 3 · 23/4V (T ),

which has two solutions:

s̃ = 0

and

s̃ =
A4

256
(t − t0)4.

These are exactly the Norton’s Dome solutions!


