Upgrade of the beam pipe, beam detectors and trigger system

Sergey Sedykh for the BM@N

BM@N Detector Advisory Committee January 19, 2021

Outline

- Beam transport line from Nuclotron to BM@N
- Beam tracking and profile detectors
- Beam counters (BC1, BC2, VC)
- Target area and trigger multiplicity detectors
- Trigger options with downstream detectors

for the remaining section

Continuous vacuum from Nuclotron to <u>BM@N</u> Вентиляция -110 m of modernized ion guide – 6 magnets BM@N – 17 quadrupole lenses – 14 points for ion beam diagnostics – 4 focus areas (F3-F6) Nuclotron +0 +0 +0 +0 10 10 10 10 водоохлаждение Current status _____ _____ – formal contract was finalized in mm mm 12.2020 for most of the beamline Nuclotron $\rightarrow \frac{138 \text{ m}}{\text{lenght of the ion guide}} \rightarrow BM@N$ additional contract will be organized

Vacuum ion transport line from Nuclotron to BM@N

Vacuum chamber for SP12 in F6

Sketch and final design of the vacuum chamber

Requirements and parameters

- inner part from the steel same to the poles
- should fill vertically the whole magnet
- vacuum <10⁻² Torr
- side parts from stainless steel, no welding
- length \sim 4m; weight \sim 1.5t

Installation of vacuum chamber for SP12 in F6

A.Kubankin ea (BSU Group), S.Anisimov ea (LHEP), P.Rukoyatkin (Beam Transport), S.Piyadin (BM@N)

Installation steps

 removal of RP concrete blocks
 lifting of the upper part of the magnet (32 t)

Similar operation will be used for some other dipole magnets

Control tests of vacuum chamber for SP12 in F6

Results of the tests

- 5·10⁻³ Torr reached in ~30 min with vacuum pump Pfeiffer Duo 35, (pressure measured with Pfeiffer Vacuum D-35614)
- less than 3·10⁻¹⁰ Pa·m³/s leakage measured with Pfeiffer ASM 340 detector
- when the chamber was left closed, after 17 hrs, pressure went up to 10⁻¹ Torr (acceptable rate)

Prototype of the vacuum box with movable ionization chamber profilometer

Overall assembly:

R&D

VACUUM

- vacuum box ~40 cm dia.
- sensitive area of the ionization chambers
 - ~18 cm dia. (4 stations)
 - ~10 cm dia. (5 stations)

Movable part with thin titanium windows

Beamline from Nuclotron to BM@N

Overview of the current status

- Measurement of the beamline components with 3D model (done)
- Technical documentation and design of major components (done)
- Prototypes of all major components (manufactured and tested)
- Chambers for SP-12 and SP-12A magnets upstream of BM@N (done)
- Formal official contract (done for most of the beamline)
- Technical design for the whole beamline (March 2021)
- Production of components (March August 2021)
- Installation and testing: (June September 2021)

Beam pipe in BM@N before the target *S. Piyadin et al., BSU Group*

- Vacuum pipe for 1K-2K lenses was produced and tested in 2020
- Non-standard diameters: – inner >192 mm
 - outer <198 mm
 should be machined and welded
- Joints without flanges
- Mechanically the test was successful, but some induced magnetization found. Currently under investigation, how to proceed

Vacuum components in BM@N area between SP-57 and SP-41

Current status:

- all components were made and tested in the BSU Lab (specs. ~10⁻³ Torr); delivered and assembled at BM@N in Oct.2019
- magnetization of components was found after welding and machining, therefore, one bellow and parts for Si-p2, Si-t3 and VC were remade of aluminum in 2020
- mechanics of Si-p1, Si-p2 was tested and sent back to Belgorod for further improvements

BM@N beam pipe before the target

DSSD: $60 \times 60 \text{ mm}^2$ pitch 1.87 mm $32 \times 32 \text{ strips}$ $175 \mu \text{m}$ thick

BM@N

- not yet tested in a magnetic field, but has no magnetic parts
- full shift by 10 cm
- some adjustment is needed
- software for remote control is under development

Silicon Beam Profile Detectors

current status of DSSD and FEE

- Ordered and obtained 10 detectors (done, 2019)
- Dark current tests of all 10 detectors (done, 2019)
- Tests with ²⁴¹Am source of 4 detectors mounted on PCB (done, 2020)
- FEE design with two ASICs (in progress)VA163+TA32Dyn. Range $\pm 750 \text{ fC} (<Q_c>= 96 \text{ fC}; <Q_{Ar}>= 866 \text{ fC})$ VA HDR16+TA32 $\pm 30 \text{ pC} (<Q_{Kr}>= 4 \text{ pC}; <Q_{Au}>= 18 \text{ pC})$
- Stand-alone DAQ based on 16ch ADC (design in progress)
- Tests of the overall assembly (Jun.-Aug. 2021)

Silicon Beam Tracker Detectors

Group of N.Zamjatin

Detector:

- double-sided
- active area 63x63 mm²
- pitch 475 μm
- 128 x 128 strips
- thickness 175 μ m

BM@N

Silicon Beam Tracker Detectors

Group of N.Zamjatin

First test of beam tracker Si detector

6th BM@N Coll. Meeting, talk of Bogdan Topko

Silicon Beam Tracker Detectors

current status of DSSD and FEE

- Ordered and obtained 15 detectors (done, 2019)
- Dark current tests of all 15 detectors (done, 2019)
- Tests with ²⁴¹Am source of 3 detectors mounted on PCB (done, 2020)
- FEE design with two ASICs (in progress) VA163+TA32 Dyn. Range $\pm 750 \text{ fC} (\langle Q_c \rangle = 96 \text{ fC}; \langle Q_{Ar} \rangle = 866 \text{ fC})$ VATA64HDR16.2+TA32 -20..+50 pC ($\langle Q_{Kr} \rangle = 4 \text{ pC}; \langle Q_{Au} \rangle = 18 \text{ pC}$) Design of "light" ion option will be started after testing the "heavy" one
- Tests of the overall assembly (Jun.-Oct. 2021)

Target station

Section of carbon vacuum pipe and Barrel Detector

S.Piyadin, Yu.Gusakov, BSU Group

Current status

- developed and tested
- no magnetic materials
- should be able to operate in the magnetic field

Beam Counters: BC1, VC

Viewport

quartz

PMT

Sketch of vacuum box for BC1 and VC Design of PMT mount for BC1 and VC

Current status

PMTs:

- Hamamatsu R2490-07
 operate in magnetic field <1T
 (available ~14 PMTs, 1 base)
- testing with laser system is planed
- design of PMT mounts (completed)

Scintillators (BC400B):

- 100x100x0.25mm³ (BC1)
- dia.100x10mm
 with hole 27 mm (VC)
 (available)

Scintillator mounts (design is scheduled for Spring 2021)

19

Beam Counters: BC2

FFF

PMT

Viewport (quartz)

Sketch of vacuum box

Design of PMT mount

Photocathode: $25 \times 25 \text{ mm}^2$

Current status

MCP-PMT XPM85112/A1-Q400 operate in magnetic field <1T (available)

PMT + FEE mounts (design is close to completion)

FEE (design is ready, production scheduled for Spring 2021)

Scintillators BC400B 30x30x0.15mm³ (available) Quartz 40x40x0.2 mm³ (available)

Scintillator mounts (design is scheduled for Spring 2021)

BM@N

Upgrade of Si Multiplicity Detector

Group of N.Zamjatin

Current status

- trapezoidal detectors (tested, ready for mount on PCB)
- 2 PCBs (design in progress)
- 2 FEE boards 32 ch each (ready, used in 2018)
- light and EM schielding (design in progress)
- mechanical support (design in progress)

Exp. overall completion July 2021

Detector parameters:

- opening for the beam. Dia. 28 \rightarrow 50 mm
- 8 trapeziodal detectors
- 64 strips in total
- 525 μm thick

BD Shielding Optimization

N.Lashmanov

Pb Shield **BD** strips R = 30 cmL = 1 cmR = 50 cmL = 1 cmSiD

Criteria:

- sufficient background suppression;
- reduce material for potential detectors at high θ ;
- put Pb only where it's needed;
- convenient mounting;

Inner shield (5mm thick) Reduction in length $180 \rightarrow 100$ mm results in 1.53 increase in background rate (Au+Au, 4GeV/n, 300µm)

Centrality selection with BD and Si triggers

DCM QGSM, Au+Au, 4GeV/n, 300µm

At these thresholds the background level in triggered events is <10%

N.Lashmanov

Potential additional triggers – I

N.Lashmanov

Fragment detector near the FHCal

160x160 mm²,

4 quartz plates, 160x40x6 mm³ (available)

viewed by 4-5 SiPMs from both sides; SiPM SensL 6x6 mm² UV sensitive (ordered)

Threshold on summed Z² provides either trigger signal or "fast clear" Simulation DCM QGSM, Au+Au 4GeV/n, 300µm

Potential additional triggers – II

N.Lashmanov

DCM QGSM, Au+Au, 4GeV/n, 300µm

FHCal signals

a) neutron zoneb) charged particles zone

Summed energy of all neutrons in FHCal

Thank you for your attention