
1

Anna Belova, JINR, 2020.

Prospects to use
the FairMQ data
exchange system
for SPD

2

SPD ROOT

Monte Carlo simulation, event reconstruction for both simulated
and real data, data analysis and visualization are planned to be
performed by an object oriented C++ toolkit SPDroot. It is based
on the FairRoot framework initially developed for the FAIR
experiments at GSI Darmstadt and partially compatible with
MPDroot and BM@Nroot software used at MPD and BM@N,
respectively.

The SPD detector description for Monte Carlo simulation is based
on the ROOT geometry while transportation of secondary
particles through material of the setup and simulation of detector
response is provided by GEANT4 code. The standard
multipurpose generators like Pythia6 and Pythia8 as well as
specialised generators can be used for simulation of primary
nucleon-nucleon collision.

3

What is FairMQ

4

FairMQ structure

5

Parallelization throughput with FairMQ

6

Data transport layer

The data transport layer is the part of the software which ensures the
reliable arrival of message sand provides error checking mechanisms
and data flow controls. The data transport layer in ALFA provides a
number of components that can be connected to each other in order
to construct a processing topology. They all share a common base
class called device. Devices are grouped in three categories:
● Source: Devices without inputs are categorised as sources. A
sampler is used to feed the pipeline (Task topology) with data from
files.
● Message-based Processor: Devices that operate on messages
without interpreting their content.
● Content-based Processor: This is the place where the message
content is accessed and the user algorithms process the data.

7

Serialization

● Boost serialization. This method depends only on ANSI C++ facilities.
Moreover, it exploits features of C++ such as RTTI (Run-Time Type Information),
templates or multiple inheritance. It also provides independent versioning for each
class definition. This means that when a class definition changes, older files can still
be imported to the new version of the class. Another useful feature is the save and
restore of deep pointers.
● Protocol buffers. Protocol buffers are Google’s language-neutral, platform-neutral,
extensible mechanism for serializing structured data. The structure of the data
is defined once and used to generate code to read and write data easily to and
from a variety of data streams, using a variety of languages: Java, C++ or Python.
● ROOT. The ROOT Streamer can decompose ROOT objects into data members and
write them to a buffer. This buffer can be written to a socket for sending over the
network or to a file.
● User defined. In case it is decided not to use any of the above methods, binary
structures or arrays can still be written or sent to a buffer. Although this method does
not include any overhead for size of the data, issues can occur and will need to be
managed. These include: schema evolution, different hardware, different languages.

8

Producer-Consumer with FairMQ
extending

9

SimTask prototype

Running the simTask messaging prototype in spd_alfa:
1.Start parmq-server with the following parameters: --transport zeromq --id sim-parmq-server --

channel-config name = updateChannel, type = rep, method = bind, rateLogging = 1, address =
tcp: // * : 5205 --severity info --verbosity medium --color true --update-channel-name
updateChannel --output-name
/home/bel/work/spd_alfa/anna_belova_prototype/MQ/simTask/macros/MQ.simulation_TGeant3.par
s. root (correct the path to the last root file);

2. Run sink with the following parameters: --transport zeromq --in-channel data # all # --id sim-
sink1 --channel-config name = data # all #, type = pull, method = bind, rateLogging = 1 ,
address = tcp: // *: 5206 --class-name FairMCEventHeader --branch-name MCEventHeader. --
class-name TClonesArray --file-name
/home/bel/work/spd_alfa/anna_belova_prototype/MQ/simTask/macros/MQ.simulation_TGeant3.dat
a.root (correct the path to the last root file - this will be the output file) ;

3. Run run-sim with the following parameters: --transport zeromq --channel-config name =
updateChannel, type = req, method = connect, rateLogging = 1, address = tcp: // localhost:
5205 --channel-config name = data # all #, type = push, method = connect, rateLogging = 1,
address = tcp: // localhost: 5206 --severity info --verbosity medium --color true --nof-events 100
TGeant3 --id sim -sampler0 --random-seed 5 (the last number is random - you can change it)

Notes. The executable files are located in the folder where the build was made, and more
specifically in bin / anna_belova_prototype / MQ / simTask /. All three applications need to run in
three different terminals. The server and sync must continuously display status information. If this
does not happen, then this is a failure, and you need to restart the application (this is very rare).
Sometimes the tcp address is buggy - in this case, you need to change it. Running two servers at
the same time at the same address will not work.

10

Start run with parmq-server and sink

11

Start run with run-sim

12

Start run with run-sim

13

Init run

14

Parmq-server and sink during run-sim
starting

15

Simulation finishing

16

DDS

The Dynamic Deployment System (DDS) is an independent set of utilities and interfaces,
providing a dynamic distribution of different user processes for any given topology on any
Resource Management System (RMS). The DDS uses a plug-in system in order to deploy
different job submission front-ends. The first and the main plug-in of the system is a Secure Shell (SSH)
that can be used to dynamically transform a set of machines into user worker nodes. The DDS functions
are the following:

•Deploy a task or set of tasks

•Use any RMS (Slurm, Grid Engine, ...etc)

•Execute nodes securely (watchdog)

•Support different topologies and task dependencies

•Support a central log engine

During 2014, the core modules of the DDS were developed and the first stable prototype wasreleased.
This has been tested on the ALICE HLT development cluster using 40 computingnodes with 32
processes per node. The SSH plugin for DDS has been used to successfullydistribute and
manage 1281 ALICE O2user tasks (640 First Level Processor (FLPs) and 640Event Processing units
(EPN)). The FLP processes here are emulating the FLP nodes whichwill collect the data wheres the
EPN emulates the second step of data processing: assigningeach cluster to a track ([10])The DDS
was able to propagate the allocated ports for each process to the dependentprocesses and set
the required topology for the test. Throughout the test on this cluster, oneDDS commander server
propagated more than 1.5 million properties in less than 5 seconds.

17

DDS commands

DDS command line interface is simple and user friendly. A quick start can look like the following:

$ dds−session start

$ dds−submit−r ssh−c hosts.cfg

$ dds−topology−−activate topology.xml

$ dds−topology−−update new−topology.xml

The first command starts a DDS session with a commander server. The second one submits DDS scouts which spawn
DDS agents for the current session and act as a watchdog for them. In the given example we use SSH plug-in together
with the configuration file. After the agents are submitted we are ready to activate the topology. The third command
does that. If required the running topology can be updated with the new one without stopping using the fourth
command.

18

Topology for SimuSql

<topology id="SimuSqlDDS">

 <property id="data#all#" />

 <property id="updateChannel" />

 <decltask id="Sampler">

 <exe reachable="true">/home/bel/work/spd_alfa/build/bin/anna_belova_prototype/MQ/simTask/run-sim --transport zeromq --channel-config name=updateChannel,type=req,method=connect,rateLogging=1,address=tcp://
localhost:5205 --channel-config name=data#all#,type=push,method=connect,rateLogging=1,address=tcp://localhost:5206 --severity info --verbosity medium --color true --nof-events 100 TGeant3 --id sim-sampler0 --random-seed
5</exe>

 <properties>

 <id access="read">data#all#</id>

 <id access="read">updateChannel</id>

 </properties>

 </decltask>

 <decltask id="Sink">

 <exe reachable="true">/home/bel/work/spd_alfa/build/bin/anna_belova_prototype/MQ/simTask/sink --transport zeromq --in-channel data#all# --id sim-sink1 --channel-config
name=data#all#,type=pull,method=bind,rateLogging=1,address=tcp://*:5206 --class-name FairMCEventHeader --branch-name MCEventHeader. --class-name TClonesArray --file-name /home/bel/work/spd_alfa/anna_belova_prototype/MQ/
simTask/macros/MQ.simulation_TGeant3.data.root</exe>

 <properties>

 <id access="write">data#all#</id>

 </properties>

 </decltask>

 <decltask id="ParamServer">

 <exe reachable="true">/home/bel/work/spd_alfa/build/bin/parmq-server --transport zeromq --id sim-parmq-server --channel-config name=updateChannel,type=rep,method=bind,rateLogging=1,address=tcp://*:5205 --severity info --
verbosity medium --color true --update-channel-name updateChannel --output-name /home/bel/work/spd_alfa/anna_belova_prototype/MQ/simTask/macros/MQ.simulation_TGeant3.pars.root</exe>

 <properties>

 <id access="write">updateChannel</id>

 </properties>

 </decltask>

 <main id="main">

 <task>ParamServer</task>

 <task>Sink</task>

 <task>Sampler</task>

 </main>

</topology>

19

Topology activation

20

Conclusions

FairMQ uses ZeroMQ as its main transport layout and
therefore has superior process parallelization, data
integrity, and easy multithreading capabilities. ALICE
O2 experiments have demonstrated high throughput
using FairMQ, and therefore, there are good prospects
for using the FairMQ package in SPD experiments.

21

References

1. http://spd.jinr.ru/spd-software/

2. Alexey Rybalchenko, GSI Darmstadt, FairRoot group,
FairMQ Data Transport for Online & Offline Processing,
ALICE Offline Week CERN, July 1, 2015

3. M. Al-Turany1,2, P. Buncic2, P. Hristov2, T.
Kollegger1, C.Kouzinopoulos2, A. Lebedev1, V.
Lindenstruth1,3, A. Manafov1, M.Richter2,4, A.
Rybalchenko1, P. Vande Vyvre2, N. Winckler: ALFA: The
new ALICE-FAIR software framework

4. http://wiki.zeromq.org/intro:read-the-manual

http://spd.jinr.ru/spd-software/

22

The end

Thank you
for

attention!

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22

