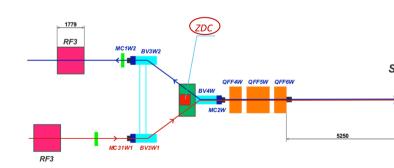
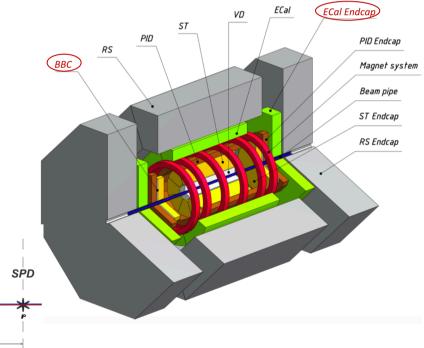
SPD local polarimetry with π^0 ($pp \rightarrow \pi^0 X$)

Polarimetry


SPD goal - Investigate **polarized** phenomena in order to contribute to disentangle nucleon <u>spin problems</u> (i.e. proton "crisis")

Polarimetry Measures the degree of polarization ⁽¹⁾ to correctly scale any asymmetry measurement **Key issue**: maximize the number of ions in the bunches which are polarized in the needed direction

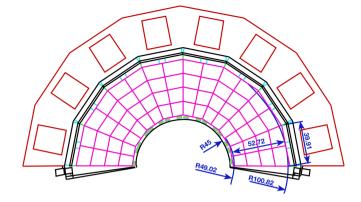

Major polarimetry (pC-CNI and Absolute polarimeters: based on gas jet, targeting stations, etc.)

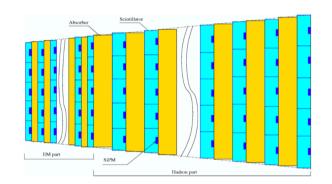

Local polarimetry

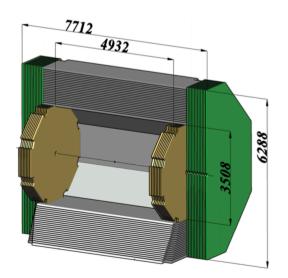
 Permanent online beam polarization monitoring to reduce systematic errors coming from the beam polarization variation.

<u>Challenge</u>: lack of precise polarization data in the SPD energy range

- (1) Polarization is understood as the fraction of protons in the bunch with their spins aligned along the polarization vector
- (2) pC-CNI: pC elastic scattering in the Coulomb Nuclear Interference

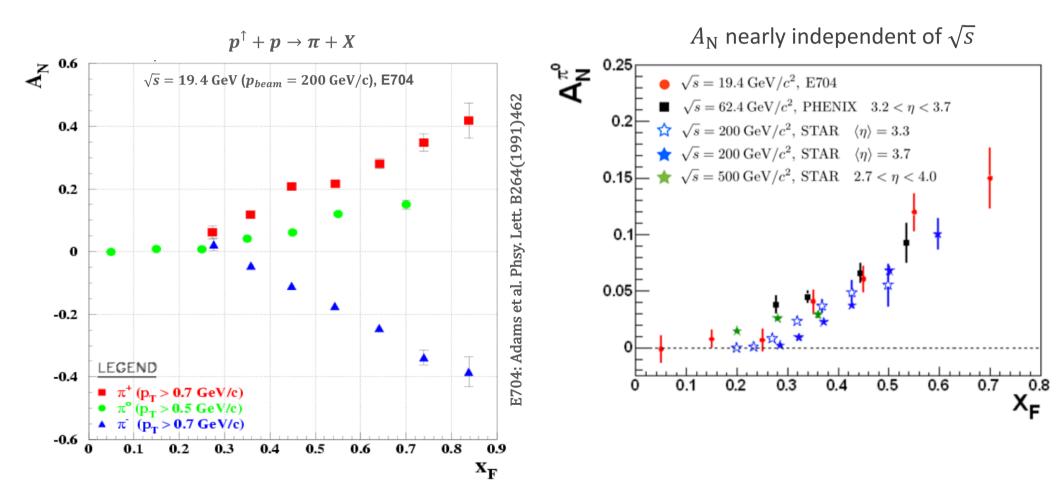

JINR, Jan 27, 2021


Katherin Shtejer


- Charged particles in forward direction
 - Beam Beam Counters (BBCs)
 - $3.3 < |\eta| < 5.0$ and $2.1 < |\eta| < 3.3$

- ***** Very forward neutron production ($pp \rightarrow nX$)
 - $\circ~$ ZDC and ZDC \otimes BBC

- Single transverse spin asymmetry, A_N , for inclusive π^0 production at high $x_F (pp \rightarrow \pi^0 X)$
 - ECal end-cups around the beam pipe
 - No information is needed on vertex position \Rightarrow fast π^0 reconstruction

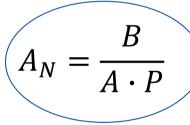


In the early 70's was believed that SSA ($A_{\rm N}$) was nearly vanishing in the framework of pQCD.

$$A_{\rm N} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

In 1991 the E704 experiment, with p^{\uparrow} at higher p_{T} values, extended the results on large A_{N} .

Extraction of A_N


$$p^{\uparrow} + p \rightarrow \pi^0 + X$$
 SPD setup: $\phi = 2\pi$

The cross section of hadron production in polarized $p^{\uparrow} + p$ collisions, is modified in azimuth.

$$\frac{d\sigma}{d\phi} = \frac{d\sigma}{d\phi_0} (1 + P \cdot A_{\rm N} \cdot \cos\phi)$$

Azimuthal cosine modulation

$$N_{\pi^0}(\phi) = A + B\cos\phi$$

 $N_{\pi^0}(\phi)$: Yield of π^0 *P*: Beam polarization

Polarized proton

Two methods used in PHENIX to measure the raw asymmetry

$$P \cdot A_N \cdot \cos \phi = \epsilon(\phi)$$

1
$$\epsilon_{pol}(\phi) = \frac{N^{\uparrow}(\phi) - N^{\downarrow}(\phi)}{N^{\uparrow}(\phi) + N^{\downarrow}(\phi)}$$

Two different yields (up - \uparrow and down - \downarrow) in <u>one</u> <u>azimuthal region</u>. Needs to account for the relative luminosity effects:

$$\mathcal{R} = \frac{\mathcal{L}^{\top}}{\mathcal{L}^{\downarrow}}$$

$$\epsilon_{sqrt}(\phi) = \frac{\sqrt{N^{\uparrow}(\phi) \cdot N^{\downarrow}(\phi + \pi)} - \sqrt{N^{\downarrow}(\phi) \cdot N^{\uparrow}(\phi + \pi)}}{\sqrt{N^{\uparrow}(\phi) \cdot N^{\downarrow}(\phi + \pi)} + \sqrt{N^{\downarrow}(\phi) \cdot N^{\uparrow}(\phi + \pi)}}$$

Yields from two azimuthal regions in opposite sides of the calorimeter (ϕ and $\phi + \pi$) and two polarization directions (up - \uparrow and down - \downarrow). Relative luminosity effects can be ignored.

```
JINR, Jan 27, 2021
```

proton

$$p + p \rightarrow \pi^0 + X$$

Min. bias	
SoftQCD:all	= on
PDF:pSet	= 15
BeamRemnants:primordialKT	= on
BeamRemnants:primordialKTsoft	= 1.1
BeamRemnants:primordialKThard	= 1.8
BeamRemnants:halfScaleForKT	= 2.0
BeamRemnants:halfMassForKT	= 4.0
BeamRemnants:reducedKTatHighY	= 0.7
BeamRemnants:primordialKTremnant	= 0.4
PhaseSpace:pTHatMinDiverge.	= 0.5

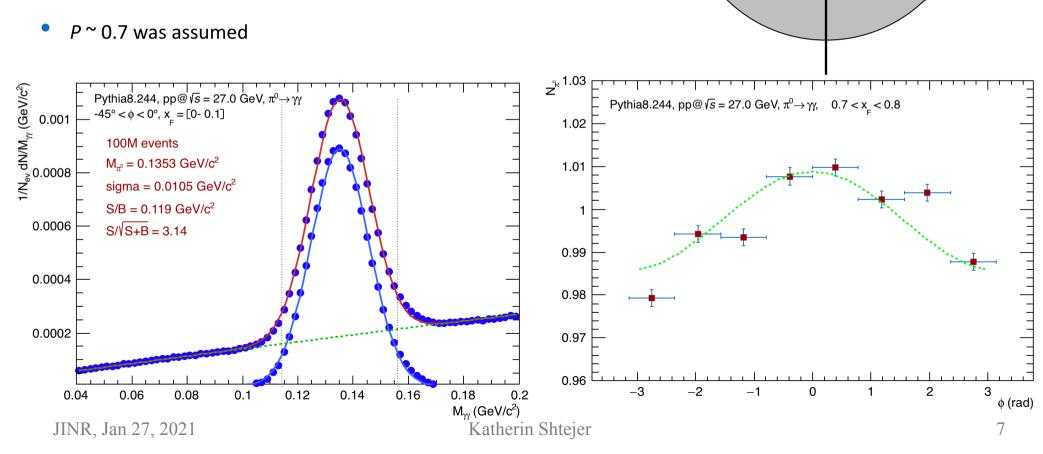
In Pythia this QCD process selection is intended to represent the total cross section of hadron collisions

Pythia 8244

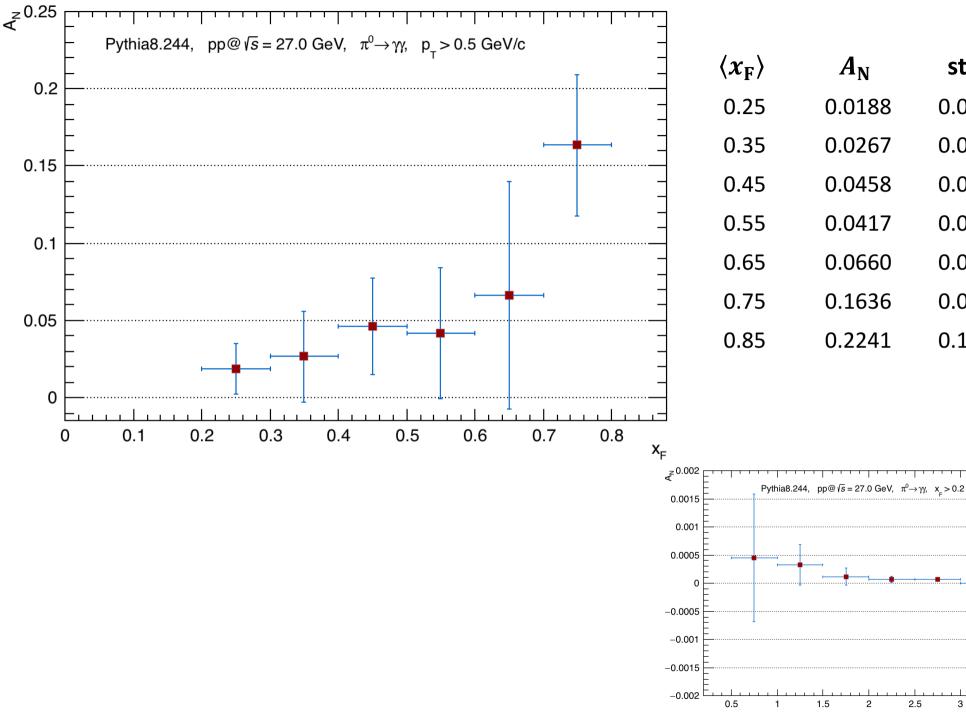
$$\sqrt{s} = 27 \ GeV$$
, 10^8 events

• Gaussian smearing on E_{γ} according to the ECal end-caps energy resolution:

$$\frac{\sigma_E}{E} = \frac{6.58\%}{\sqrt{E}} \oplus \frac{1.97\%}{E}$$


- Uniform distribution to smear the vertex in $\Delta Z = \pm 30 \ cm$
- Cut low energy photons: $E_{min}^{\gamma} = 400 MeV$

Extraction of π^0 yields


y

x

- 8 azimuthal bins.
- The spin dependent π^0 yields for each bin are extracted from the invariant mass spectra in different p_T and x_F subranges for each ϕ bin.
- The invariant mass was fitted with a polynomial function for the background and a normalized Gaussian distribution representing the signal peak.

Transverse SSA $(A_{\rm N})$

2

2.5

3

stat.

0.0161

0.0294

0.0312

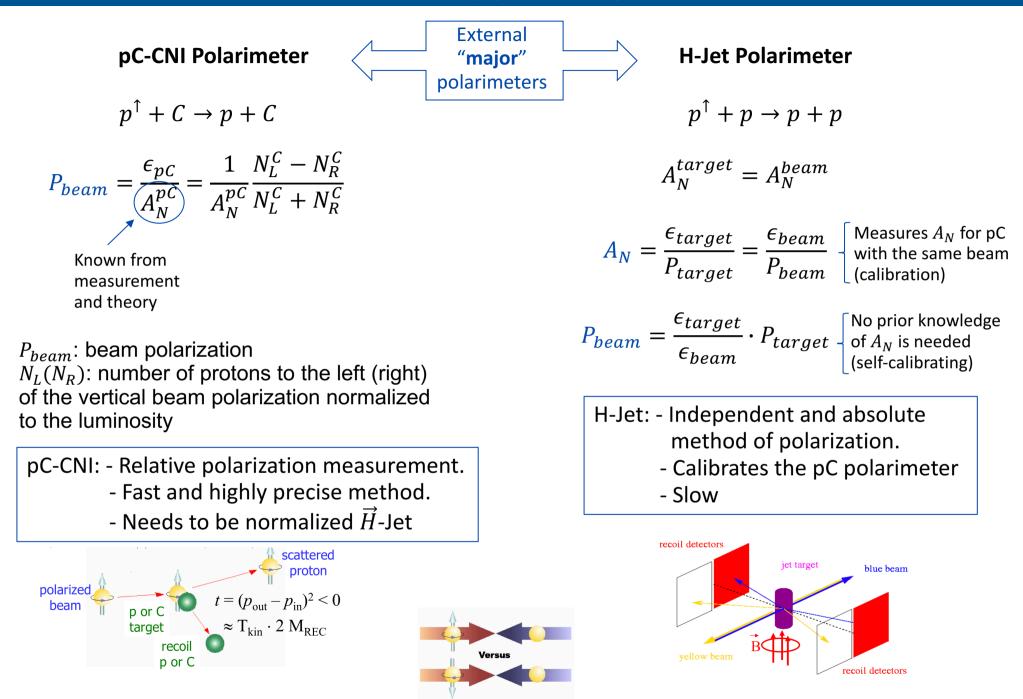
0.0426

0.0736

0.0459

0.1701

The transverse single spin asymmetry as function of x_F shows a clear rising non-zero asymmetry, going from 0 to ~20%


The $p^{\uparrow} + p \rightarrow \pi^0 + X$ inclusive reaction seems to be suitable for local polarimetry in SPD

The same study based on a cluster shape size is in progress taking into account the proposed ECal cell size.

TODO: the π^0 reconstruction , using the geometry of ECal end-caps that should be implemented in SPDRoot.

BACKUP

Polarimetry (RHIC case)

