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Introduction 

The Branch-and-Bound method (B&B) is a very efficient and 

well-known technique to solve combinatorial optimization 

problems. Many parallel B&B approaches have been 

proposed so far. However distributed grid-oriented B&B 

implementations are not well studied. That’s why we do this 

study.  
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The feasible solutions of BnB are organized as a search- 

tree,  and each node is a partial solution, i.e. a part of the 

solution space.  

Aim to find the max/min value, there are three operations: 

1. Branching: split in sub-problems; 

2. Bounding: compute lower/upper bounds; 

3. Pruning: eliminate bad branches. 
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Clients also do these three operations, 

but in limited period.  
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General Distribution Strategy 

pruned branch  
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Why don’t we use message? 

The BOINC and DC-API provides limited messaging 

functionality between the master application and the 

clients. 

1. Messages are not reliable in the sense that if the client 

is not actually running when a message is being sent to it 

(e.g. because it is queued by the backend grid 

infrastructure), then the message may be silently dropped. 

2. The ordering of messages is not neccessarily 

maintained. 

3. Messages are delivered asynchronously. There is no 

limit for the time elapsed before a message is actually 

delivered. 
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Our Load Balance Strategy 

(1)Uncorrelated data instances;  

(2)Weakly correlated instances; 

(3)Strongly correlated instances. 



Experimentation 

We tested BNBTEST@HOME on a small cluster with 15 computers, 

each with 2-4GB of RAM and 2-8 cores processor, running different 

operation systems, primarily GNU/Linux and Microsoft Windows 

series. 
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Future works 

BNBTEST has been proven as a good distributed 

branch and bound solver. Future work will focus on 

more efficient packaging and distribution strategy, and 

make the BNBTEST to be a modular middleware, with 

the user interface for user. Also we plan to increase our 

volunteer grid for solve more complex and practical 

optimization problem. 



Thank you for your attention! 


