
EFFICIENT IMPLEMENTATION OF

BRANCH-AND-BOUND ON DESKTOP GRIDS

Bo Tian1, Mikhail Posypkin1

1 Moscow State University, Moscow, Russia

GRID’2014 The 6th International Conference

“Distributed Computing and Grid-technologies in Science and Education”

GRID’2014

1-5th July, 2014

Dubna, Russia

Desktop Grid For International Science Collaboration

Outline

• Introduction;

• Problem definition and method in solution;

• How to improve load balance;

• Test case – 0-1 knapsack problems;

• Conclusions(Future work).

Introduction

The Branch-and-Bound method (B&B) is a very efficient and

well-known technique to solve combinatorial optimization

problems. Many parallel B&B approaches have been

proposed so far. However distributed grid-oriented B&B

implementations are not well studied. That’s why we do this

study.

Outline

• Introduction;

• Problem definition and method in solution;

• How to improve load balance;

• Test case – 0-1 knapsack problems;

• Conclusions(Future work).

The feasible solutions of BnB are organized as a search-

tree, and each node is a partial solution, i.e. a part of the

solution space.

Aim to find the max/min value, there are three operations:

1. Branching: split in sub-problems;

2. Bounding: compute lower/upper bounds;

3. Pruning: eliminate bad branches.

...
...

Search tree

Sequential Branch and Bound

pruning

pruning

General Distribution Strategy

Master Client A Client B Master

General Distribution Strategy

Master Client A Client B Master

1. Master do branching

operation, to get a possible

solution;

General Distribution Strategy

Master Client A Client B Master

1. Master do branching

operation, to get a possible

solution;

2. Master do bounding

operation, to calculate the

lower/upper bound;

General Distribution Strategy

Master Client A Client B

1. Master do branching

operation, to get a possible

solution;

2. Master do bounding

operation, to calculate the

lower/upper bound;

3. Master do pruning operation,

eliminate bad branches.

Master

General Distribution Strategy

Master Client A Client B

D

D

2
3

4

5 6

Master

Clients also do these three operations,

but in limited period.

Branches and
lower bound

General Distribution Strategy

pruned branch

Master Client A Client B

Up to maximum steps, client

stop and return better result,

better lower bound or all the

rest of branches

2
3

4

5 1

Master

Master Client A Client B Client C

 A. Master send work-unit to client
A

B. processing time(fixed)

B

Task 1 not completed

Result

Task 2 completed

A

Task 1 completed

Result

General Load Balance Strategy

Outline

• Introduction;

• Problem definition and method in solution;

• How we improve load balance;

• Test case – 0-1 knapsack problems;

• Conclusions(Future work).

Why don’t we use message?

The BOINC and DC-API provides limited messaging

functionality between the master application and the

clients.

1. Messages are not reliable in the sense that if the client

is not actually running when a message is being sent to it

(e.g. because it is queued by the backend grid

infrastructure), then the message may be silently dropped.

2. The ordering of messages is not neccessarily

maintained.

3. Messages are delivered asynchronously. There is no

limit for the time elapsed before a message is actually

delivered.

Our New Distribution Strategy

Master Master Workunit 1 Workunit 2 Workunit 3

Our New Distribution Strategy

Master Master Workunit 1 Workunit 2 Workunit 3

Client A Client B Client C

Our Load Balance Strategy

Outline

• Introduction;

• Problem definition and method in solution;

• How we improve load balance;

• Test case – 0-1 knapsack problems;

• Conclusions(Future work).

Our Load Balance Strategy

(1)Uncorrelated data instances;

(2)Weakly correlated instances;

(3)Strongly correlated instances.

Experimentation

We tested BNBTEST@HOME on a small cluster with 15 computers,

each with 2-4GB of RAM and 2-8 cores processor, running different

operation systems, primarily GNU/Linux and Microsoft Windows

series.

Outline

• Introduction;

• Problem definition and method in solution;

• How we improve load balance;

• Test case – 0-1 knapsack problems;

• Conclusions(Future work).

Future works

BNBTEST has been proven as a good distributed

branch and bound solver. Future work will focus on

more efficient packaging and distribution strategy, and

make the BNBTEST to be a modular middleware, with

the user interface for user. Also we plan to increase our

volunteer grid for solve more complex and practical

optimization problem.

Thank you for your attention!

