
High-level optimization modeling
software in distributed computing

environment

6th International Conference
"Distributed Computing and Grid-technologies in Science and

Education"

Vladimir V. Voloshinov, Smirnov S.A.
Supported by the Russian Foundation for Basic Research

(grant # 13-07-00987)

Center of Grid-technologies & Distributed Computing,
Institute for Information Transmission Problems RAS, Moscow

JINR, Dubna, 2014

#2

MPI,
Object oriented m/w
Web-services,
REST-services, etc

Middleware software

Optimization & distributed computing
Typical problems:
• to increase computing power of available and/or emerging
solvers by available computing environment
• to provide convenient interface for researchers

Researchers
and their problems’

specific requirements
Computing resources

AMPL,
GAMS,
Zimpl, etc

Modeling lang. &
interpreters

glpk, lpsolve,
clp, cbc, bonmin,
ipopt, scip, etc.

Solvers

??????

??? ???

#3

GLPK (LP, MILP), A. Makhorin, RU, since ~2002

LP_SOLVE, (LP, MILP) Eindhoven University of Technology,
NL, since ~2000

COmputational INfrastructure for Operations Research,
www.coin-or.org (“IBM’s aegis”), more than 40 solvers&libs:
since ~2005
CLP (LP), CBC (MILP),
Ipopt (NLP),
Bonmin/CBC/Ipopt (MINLP, convex on all variables)

SCIP (LP, MILP, MIQP, MINLP of some types, e.g.
polynomial), Zuse Institute Berlin, DE, ver. 1.0 at 2007

BnB-solver (MILP, global optimization), M. Posypkin, IITP
RAS, RU

Incomplete list of those solvers we used in our researches

Solvers for optimization problems (open source)

Existing approach - usage of AML-system
AML - Algebraic Model Languages (AMPL, GAMS, Zimpl, etc).

Common features:
✔ Convenient (symbolic "TeX-like") description of object

& constraints functions
✔ Separation of "symbolic/abstract" models and

numerical data for multivariate computation (parameter
sweeping)

✔ Automatic differention (Jacobian & Hessian)
✔ Support of "Lagrangian formalism" - access to optimal

variables and duals found by solver
✔ Unified open-source (even for "commercial" AMLs) API

for solvers' and applications’ developers

Usage of AMLs is crucial at preliminary phases of R&D
#4

There are a number of AMLs

Incomplete list:

AMPL - A Modeling Language for Mathematical Programming,
AT&T Bell Laboratories, D.M. Gay, Brian W. Kernighan,
since 1980-х, http://www.ampl.com

GAMS - General Algebraic Modeling System,
International Bank for Reconstruction and Development,
since 1980-x, http://www.gams.com

OPL - Optimization Programing Lang., IBM,
ILOG CPLEX (LP, QP, ...), CP Optimizer, http://www-

01.ibm.com/

GNU MathProg - "subset" of AMPL for GLPK, GNU LP Kit,
Andrey Makhorin, MAI,
since 2000, http://www.gnu.org/software/glpk/

Zimpl - since 2004, http://zimpl.zib.de/ (LP, MILP, NLP ?)
Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

#5

General scheme of AMLs usage

"Symbolic" opt. model

Parameters' values

param p : ...;
set I : ...;
set J : ...;

file *.dat

AML-script
model *.mod;
data *.dat;
option solver ipopt;
solve;
display _var, _dvar;
printf ...

AML-translator
ampl.exe
gams.exe
SCIP

Problem's data as a
stub file
AMPL "stub", *.nl,
*.sol

GAMS data exch.,
*.gdx

ZIMPL for SCIP

AML API

AMPL/
Solver
interface
Library

GAMS
....

Solvers
CPLEX
Lpsolve
Minos
Knitro
Snopt
Gurobi
Mosek
...

COIN-OP
CLP, CBC,
Ipopt
Bonmin
...

SCIP

AMPL and GAMS -
most popular de-facto standards

#6

#7

Optimization & distributed computing (service-oriented)
Since 2004, project Optimization Services,
www.optimizationservices.org, under the aegis of
COIN-OR (IBM) www.COIN-OR.org/projects/OS.xml

COIN solvers !!!
AMPL, GAMS - !!!
XML-RPC, WSDL, BPEL - ???

#8

Our approach
https://gitlab.com/u/sol, https://mc2.distcomp.org
http://dcs.isa.ru/drupal/ru/development/mathcloud/optimizationServices

REST - as an architectural style
MathCloud - as a middleware and software toolkit
HTTP, JSON (JavaScript Object Notation) as a messages format (plain text),
HTML+JavaScript for Web User Interface (WUI)

AMPL - optimization modeling and algorithms (high-level)
description
AMPL-compatible solvers CLP, CBC, Ipopt, Bonmin, SCIP
(LP/MILP, NLP, MINLP), BnB (MILP, global opt)

Mathcloud Python API, MPI, Erlang (experimental) – for
low-level data exchange (solver����solver, ampl����solver)

#9

Our approach. Use case: solve “separate” problems

AMPL-scripts
models, data,

“high-level” algorithm

Pull of optimization-services-*
(server | cluster | cloud ...)

…

ampl-stub* (server)

*.mod, *.dat,
*.amp
files

AgentsContainers

MathCloud
infrastructure

AMPL-translator

…

#10

Our approach. Use case: run “remote” AMPL-script
.

AMPL-scripts
models, data,

“high-level” algorithm

…

ampl-stub*, ampl-exec* (server)

*.mod, *.dat,
*.amp
files

AgentsContainers

MathCloud
infrastructure

AMPL-translator

MathCloud
Python API

…

Pull of optimization-services-*
(server | cluster | cloud ...)

#11

Our approach. Use case: run “local” AMPL-script
“in MathCloud”

.
AMPL-scripts
models, data,

“high-level” algorithm

Pull of optimization-services-*
(server | cluster | cloud ...)

…

ampl-stub*, ampl-exec* (server)

*.mod, *.dat,
*.amp
files

$... ampl

AgentsContainers

MathCloud
infrastructure

MathCloud
Python API

AMPL-translator

AMPL-translator

MathCloud
Python API

…

#12

Our approach. Use case: additional “low-level”
inter-solver data exchange.

AMPL-scripts
models, data,

“high-level” algorithm

Pull of optimization-services-*
(server | cluster | cloud ...)

…

ampl-stub*, ampl-exec* (server)

*.mod, *.dat,
*.amp
files

$... ampl

AgentsContainers

MathCloud
infrastructure

MathCloud
Python API

AMPL-translator

AMPL-translator

MathCloud
Python API

“Low-level” data exchange (Erlang, ZeroMQ ?, Ice ?)

…

#13

Our researches on optimization
• Optimal Control Problems with Mixed Control-State
constraints
• Global & discrete optimization:

• knapsack problems,
• particles spatial optimization (to minimize inter-particle

potential energy Lennard-Jones, Morse)
• Global opt. in combinatorial geometry (Tammes problem, 13-
Spheres problem
• Сrypto-resistance of known algorithms (A5/1)
• Algorithm of amorphous carbonaceous nanomaterial structure
identification with a joint X-Ray and neutron diffraction
experiments data analysis
• Miscellaneous experiments with Traveling Salesmen, Task-
Scheduling problems, LP with block-structure

Set of "atomic" RESTful-optimization services

"Atomic" REST-services deployed in a dedicated servers, clusters, cloud by
MathCloud Everest agents/container

Prepare input data & processing output (solution):
ampl-stub - generate AMPL-stub from model and data
ampl-pre-opt - more complex AMPL-stub generation (model, data, AMPL-

script)
ampl-post-opt - processing solution (model, data, solution AMPL-

format, AMPL-script)

Solver services (via LPSOLVE, CBC/CLP, Ipopt, Bonmin other AMPL-solvers):
optimization-service-{command | cluster | grid} - to solve LP/MILP,

NLP/MINLP problems presnted by their AMPL-stub,
respectively on dedicated server, cluster, grid-node

Set of GLPK services (GLPK includes GNU MathProg translator):
glpk-{command | cluster | grid} - full scheme of optimization:

model, data, pre opt. GMP script -> solution -> post opt. GMP
respectively on dedicated server, cluster, grid-node

#14

Web-interface of RESTful-optimization services

#15

#16

Set of "composite" RESTful-optimization services

http://dcs.isa.ru/drupal/ru/development/mathcloud/optimizationServices
Composite services are implemented as WORKFLOWS of atomic ones.

"Full optimization cycle" services (ampl-pre-opt, optimization-*, ampl-post-opt):
ampl-optimization-service-{command | cluster | grid} - full scheme of

AMPL-optimization:
model, data, pre opt. AMPL script -> solution -> post opt. AMPL
respectively by solvers on dedicated server, cluster, grid-node

mcl-control - "enhanced" AMPL-translator, enables running any (!)
AMPL-algorithm in distributed mode;

all stubs are sent to a pool off optimization-service-*
and solutions are brought back to AMPL (and so on);
Includes simple task manager (Python) for load balance

... a number of demo & test services

Workflow for ampl-optimization-service-(command). MathCloud WF
Editor

#17

Auto generated web-interface for composite
ampl-optimization-service-(cluster)

#18

Web-interface "inherits"
WUI of atomic services

Automatic implementation by
WFMS

Mcl-control logic. "Distributed mode" of any AMPL algorithms

#19

Take any any AMPL-algorithm and run it in distributed mode:
- all stubs are sent to a pool off optimization-service-*;

- solutions are brought back to AMPL (and so on);
- includes simple task manager (Python) for load balance in heterogeneous

"environment", i.e. unknown task complexity and optimization services
performance

Mcl-control architecture. MathCloud API (Python)

#20

Everest atomic + Python + a number of AMPL "macroses"

Transport problem with block structure

#21

A number of products must be delivered from initial placements (offers) to
consumers (demands) over transport set of limited carrying capacity.
O - set of initial placements, D - set of demands, P - set of products
Supplyo,p - initial values of product p in o
Demandd,p - requirement on p in d
co,d,p - cost of transportation (o->d) for unit of product p
lo,d - capacity of (o->d)

, , , , , ,, ,

, , ,

,, ,

, , ,

min over { }, (total transport cost) s.t.

(,) (products delivery constraints)

(,) (products supply constraints)

o d p o d p o d po O d D p P

o d p d po O

o po d pd D

o d p o d

c x x

x Demand d D p P

x Supply o O p P

x l

∈ ∈ ∈

∈

∈

⋅ →

= ∈ ∈

= ∈ ∈

=

∑
∑
∑

, ,

() (transport capacity)

0
p P

o d p

p P

x
∈

∈

≥
∑

Classical problem with block structure to demonstrate decomposition algorithms
(Dantzig-Wolfe, Bendres etc) . AMPL-algorithm
http://www.ampl.com/NEW/LOOP2/ multi2.mod, multi2.run, multi.dat

Original AMPL DW-algorithm (multi2.run) is not parallel

#22

Original AMPL-algorithm
http://www.ampl.com/NEW/LOOP2/ multi2.run uses

subsequent for cycle for subproblems solving

...
for {p in PROD} { printf "\nPRODUCT %s\n\n", p;

solve SubII[p];
...
if Reduced_Cost[p] < - 0.00001 then {
/* change subproblems parameters */;
...
};

...

Sub-problems

Master
problem

Modified (multi2_mclTest-remote.amp) is parallel

#23

Just replace fragments of original AMPL code. “Map-reduce style”
for {p in PROD} { printf "\nPRODUCT %s\n\n", p;

solve SubII[p];
...
if Reduced_Cost[p] < - 0.00001 then {
/* change subproblems parameters */;
...
};

for {p in PROD} { printf "\nPRODUCT %s ==> stub \n\n", p;
problem SubII[p];
let __mcl_probName := ("SubII_" & p);
commands mcl_write_problem_stub.amp; # Generates sub-problems AMPL-stubs

}

commands mcl_solve_problems_list.amp; # Parallel solving of SubII_*

for {p in PROD} { printf "\nPRODUCT %s <== solution\n\n", p;
solve SubII[p]
problem SubII[p];
solution ("SubII_" & p & ".sol");

if Reduced_Cost[p] < - 0.00001 then {
/* change subproblems parameters */;
...
};

mcl-control runs multi2_mclTest-remote.amp

#24

Start and finish web-forms

Fragments of userout.txt

#25
“Fast” optimization-services may solve more problems than “slow” ones

Branch-and-bound for MI... problem (e.g. boolean)

#26

General scheme of search tree traversal for problem P(XB,XC)

Sx1x... Sx0x...

Sx1x1... Sx1x0... Sx0x1... Sx0x0...

P(x)

… … …
S – subproblems

Current state of B&B (changed dynamically):
- list of nodes to be processed (green);
- known upper-bound (aka incumbent | record)

0 ,
(,) min (,)

B C
B C B Cx x

f x x x x Q→ ∈

0UB = (,), (,)B C B Cf x x x x Q′ ′ ′ ′ ∈

Node operation:
1) calculate lower-bound of S, LB(S), by relaxation of boolean constraints to, e.g. LP;
2) if, accidentally, feasible set of variables found – update UB

3) if LB(S) >= UB – discard node from the list (grey);
4) select boolean variable to split node and add new ones to the tree

(,)B Cx x Q′′ ′′ ∈
{ }0UB :=min UB, (,)B Cf x x′′ ′′

B&B is one of the best algorithms suited for parallelization

Fine-grained decomposition of B&B (traditional approach)

#27

Sx1x... Sx0x...

Sx1x1... Sx1x0... Sx0x1... Sx0x0...

P(x)

…

Master-slave data exchange:
sub-trees and incumbents (!!!)
Sub-tree (sub-problems) are generated dynamically

Usually, the approach is based on MPI and run at
high-performance cluster

…

Master B&B
process

Slave B&B
processes

…
…

…

…

Coarse-grained (“static”) decomposition of B&B

#28

Sx1x... Sx0x...

Sx1x1... Sx1x0... Sx0x1... Sx0x0...

P(x)

The approach is not so popular as fine-grained one, but
is much more easy for implementation via solvers’ API and some
“light-weight” middleware, e.g. Erlang, Zeroc Ice, ZeroMQ etc.

Preliminary decomposition is crucial for speed-up and requires
analysis of the problem’s data ! E.g. by AMPL (!)

…

Preliminary
decomposition B&B

solvers

…

… …
B&B solvers exchanges with incumbents only

Solvers API + m/w

Travelling salesmen problem coarse-grained experiment (1)

#29

Heuristic rule: sort {dij} in ascending order and decompose by
xij:=0|1 corresponding to the smallest dij
(to get “balanced” by incumbents subproblems ??)

Subproblems has been generated as AMPL-stubs by special AMPL
“preprocessing” script

“Random” selection of xij to decompose doesn’t give speed-up

()

wrt:

2 1

ifif 1
1 if 1 if

1 if 1
1 if 1

>

∈ > ∈ <

∈ × ∈ ×

→

+ = ∈ =

 < = ≤ ∈ × − > >
− =

− ≤ ∈ − >

∑

∑ ∑

∑ ∑

,

, ,

:(,) :(,)

:(,

min

({ : });

,,
* (,) ;

, ,

,
();

,

ij ij
ij ij x fi j

ij ij
j V i j j V i j

ij
ij

ji

ij ji
j i j V V j i j V V

ij
j i j

d x

x x i V n

x i jn i
f i j V V

n i x i j

n i
f f i V

i
f 1

0 1
∈ ×

≥ ∈

=

∑
)

();

{ , }.
V V

ij

i V

x

Travelling salesmen problem coarse-grained experiment (2)

#30

Computing resources (12 CBC instances) :
8 CBC instances at 2 x Intel Xeon E5620 @ 2.40GHz
4 CBC instances at Intel Core i7-2600K @ 3.40GHz

N T(CBC), min T(SCIP), min
80 5.3 1.6
90 20.3 6

100 623 10
110 >10000 75

N n of Xij fixed n of subprobs T(CBCx1), min T(dCBC), min
80 4 16 5.3 2
90 5 32 20.3 11

100 6 64 623 229
110 7 128 >10000 1212

dCBC prototype (CBC, CBC API + Erlang)

Task-worker scheduling problem coarse-grained experiment (1)

#31

Heuristic rule: sort {ττττk /pn} in ascending order and decompose by
xkn:=0|1 corresponding to the smallest ττττk /pn
(to get “balanced” by incumbents subproblems ??)

Subproblems has been generated as AMPL-stubs by special AMPL
“preprocessing” script

“Random” selection of xij to decompose doesn’t give speed-up

()

{ }

1 1

1

wrt:

1

1 1 or 1 1

2 1 1

1 1

R 0 1 1 1

= =

′ ′

→

≥ =

 = = ≥ =

′+ ≤ + ⋅ − − = < ≤ =

+ ≤ = =

∈ = = =

∑ ∑

, ,

: :

min

(:);

(:) (:) ;

(: , , :);

(: , :);

, , | , : , :

k knt x z

k k

kn kn
n N n N

k
k kn k kn k n

n

k
k kn

n

k kn

z

t T k K

x k K x k K

t x t C x x k K k k K n N
p

t x z k K n N
p

z t x k K n N

ττττ

ττττ

Task-worker scheduling problem coarse-grained experiment (2)

#32

6 workers, 19 tasks, exact solution
Computing resources (40 SCIP) :

6 boolean xkn has been fixed
(64 subproblems) took 720 sec.

Very different performance,
no load balance

dCBC prototype (SCIP, SCIP API + Erlang)

host n of SCIP instances T(SCIPx1), sec

server-1
8 X
Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz 929.7

server-2
16 X
Intel(R) Xeon(R) CPU E5620 @ 2.40GHz 1368.59

xen-vm-2
8 X
Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz 2172.27

xen-vm-1
8 X
Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz 2270.38

Thank you for your
attention.

Questions?

To apply our experience and available software
we are looking for problems requiring optimization modeling.

And we are open for collaboration, http://dcs.isa.ru.

Instead of conclusion

34

{ "name": "mcl-control",
"description": "Distributed running of AMPL-скрипт ",
"inputs": {

"model.mod": {
"type": "file",
"title": "AMPL model (*.mod)",
"optional": true

},
"data.dat": {

"type": "file",
"title": "Data-file (data.dat)",
"optional": true

},
"runner.amp": {

"type": "file",
"title": "AMPL algorithm, use(printf ...>,>>(outputFilePath))"

},
"solvers": {

"type": "string",
"title": "List of optimization-service-*"

}
},

MathCloud JSON-description of mcl-control (inputs)

35

run.sh, bash script
...
ln -s stdout stdout.txt
ln -s stderr stderr.txt
{echo "BASE_URL=\"$1/services/$SERVICE_NAME/job$(basename $PWD)\""
echo 'SOLVER_URLS=['
cat solvers.txt | tr '\r' '\n' | sed -e '/^[[:space:]]*$/d' \

-e 's/[[:space:]]//g' -e 's/^\(.*\)$/"\1",/'
echo ']'} > mcl_config.py

ln $SERVICE_DIR/*.amp $SERVICE_DIR/*.py .

ampl runner.amp

"outputs": {"userout.txt": {
"type": "file",
"title": "Results printfed by user, userout.txt" },

"stderr.txt": {
"type": "file",
"title": "System error during running runner.ampl, stderr.txt"},

"ampllog.txt": {
"type": "file",
"title": "Log-file of AMPL-translator, ampllog.txt"} },

"implementation": {"adapter": "command",
"command": "bash ../../services/mcl-control/run.sh

...

MathCloud JSON-description of mcl-control (outputs and impl)

36

Optimization in processing of experimental data

#36

Fine structure of carbon films deposited in thermonuclear reactor TOKAMAK T-
10 by results of synchrotron X-ray scattering diffraction

Experimental data (on
scattering angles)

=

2
sin4 xq θ

λ
π

37

Unexpected interesting result

#37

Dominance of toroidal spatial forms of carbon has been revealed
(7 toroidal form over ~500 candidates for all criteria !)

A. B. Kukushkin, V. S. Neverov, N. L. Marusov, I. B. Semenov, B. N. Kolbasov, V.
V. Voloshinov, A. P. Afanasiev, A. S. Tarasov, V. G. Stankevich, Svechnikov
"Few-nanometer-wide carbon toroids in the hydrocarbon films deposited in
tokamak T-10" // Chemical Physics Letters (14 March 2011)
doi:10.1016/j.cplett.2011.03.036

