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›

Generative Adversarial Networks 
and Fast Simulation



How can a neural network generate data?

MPD Physics ForumArtem Maevskiy, et. al.

Random noise
e.g. multivariate normal

Neural network

Generated data

▶ This makes the generated object being a differentiable function of the network 
parameters

– The parameters of the network can be optimized with gradient-based methods

▶ Generating a sample is as fast as a single forward pass through the net

detector 
response
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▶ Quite a developing field!

▶ GANs interpolate the 
available training data

GANs for fast simulation
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K. Matchev, P. Shyamsundar, Uncertainties associated with GAN-generated datasets in high energy physics, 
arXiv:2002.06307 [hep-ph]
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Time projection chamber

MPD Physics ForumArtem Maevskiy, et. al.

http://mpd.jinr.ru/wp-content/uploads/2019/01/TpcTdr-v07.pdf

Pad and wire planes

95 232 pads

310 time 
buckets

Digitization 
time: 

~25 sec/event
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Goal:
develop a deep learning model for faster digitization of TPC

http://mpd.jinr.ru/wp-content/uploads/2019/01/TpcTdr-v07.pdf


›

Our approach to fast simulating TPC



▶ For each event need to generate 
the signal for:

– 95 232 ⋅ 310 elements (pads x time 
buckets)

– Conditioned on the track parameters 
for the whole event

▶ Very large output space

▶ Input of varying dimensionality

▶ Need to simplify somehow!

Objective
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Assumptions for fast simulation
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Assumptions for fast simulation
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▶ Factorizing the pad rows
– dividing tracks to segments, each 

contributing to a particular pad row
– can model such contributions 

independently!
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▶ Signal localization (both position & 
time)
– model only a small area instead of the 

full row
– model only a few time buckets
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▶ Factorizing the pad rows
– dividing tracks to segments, each 

contributing to a particular pad row
– can model such contributions 

independently!

▶ Signal localization (both position & 
time)
– model only a small area instead of the 

full row
– model only a few time buckets

▶ Target dimensionality: 
8 pads x 16 time buckets

Assumptions for fast simulation
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▶ Factorizing the pad rows
– dividing tracks to segments, each 

contributing to a particular pad row
– can model such contributions 

independently!

▶ Signal localization (both position & 
time)
– model only a small area instead of the 

full row
– model only a few time buckets

▶ Target dimensionality: 
8 pads x 16 time buckets

Assumptions for fast simulation
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▶ Input:
▶ 2 angles (𝜃, 𝜙) +

▶ 3 coordinates per track segment
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(instead of original 95 232⋅310)



▶ Pion particle gun

▶ 20 000 pions with fixed 𝑝$ = 478.3MeV/c

▶ Origin point uniformly distributed along the drift path and the pad row direction

▶ Uniformly distributed azimuthal and polar angles

Training data

MPD Physics ForumArtem Maevskiy, et. al. 13



▶ Model: WGAN-GP (arXiv:1704.00028 [cs.LG])

▶ Generator:

– Fully connected

– ELU activations, custom output layer activation

– 5 layers

▶ Discriminator:

– Deep convolutional NN

– ELU activations

– Dropout layers

▶ Optimization: RMSprop, learning rate 
exponential decay

Model details
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Input features
(batch_size, 5)

Input image
(batch_size, 8, 16)

Reshape
(batch_size, 1, 1, 5)

Reshape
(batch_size, 8, 16, 1)

Tile
(1, 8, 16, 1)

Concatenate

Conv2D, ELU, Dropout(0.02)
kernel: 3x3      filters: 16      padding: same

Conv2D, ELU, Dropout(0.02)
kernel: 3x3      filters: 16      padding: same

Maxpool 1x2

Conv2D, ELU, Dropout(0.02)
kernel: 3x3      filters: 32      padding: same

Conv2D, ELU, Dropout(0.02)
kernel: 3x3      filters: 32      padding: same

Maxpool 2x2

Conv2D, ELU, Dropout(0.02)
kernel: 3x3      filters: 64      padding: valid

Conv2D, ELU, Dropout(0.02)
kernel: 2x2      filters: 64      padding: valid

Reshape
(batch_size, 64)

Concatenate

Dense, 128, ELU

Dense, 1

(batch_size, 8, 16, 6)

(batch_size, 8, 16, 16)

(batch_size, 8, 16, 16)

(batch_size, 8, 8, 16)

(batch_size, 8, 8, 32)

(batch_size, 8, 8, 32)

(batch_size, 4, 4, 32)

(batch_size, 2, 2, 64)

(batch_size, 1, 1, 64)

(batch_size, 69)

Input
(batch_size, 5)

Latent space – random normal
(batch_size, 32)

Concatenate

Dense, 32, ELU

Dense, 64, ELU

Dense, 64, ELU

Dense, 64, ELU

Dense, 128, f(x)

(batch_size, 37)

Reshape
(batch_size, 8, 16)

(batch_size, 128)

Generator Discriminator

Custom activation



▶ Model: WGAN-GP (arXiv:1704.00028 [cs.LG])

▶ Generator:

– Fully connected

– ELU activations, custom output layer activation

– 5 layers

▶ Discriminator:

– Deep convolutional NN

– ELU activations

– Dropout layers

▶ Optimization: RMSprop, learning rate 
exponential decay

Model details
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Generator Discriminator

Custom activation

Convolutional layers 
are too slow on CPU



›

Results



Results
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Results
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Real Generated Real Generated Real Generated Real Generated
Visually similar!
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Results

MPD Physics ForumArtem Maevskiy, et. al.

Real Generated Real Generated Real Generated Real Generated
Visually similar! With minor artifacts
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▶ Start with a simple preliminary metric: we compare the 1st & 2nd order moments of 
the signal images, i.e.:

Metrics

MPD Physics ForumArtem Maevskiy, et. al. 20



▶ Start with a simple preliminary metric: we compare the 1st & 2nd order moments of 
the signal images, i.e.:
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▶ Start with a simple preliminary metric: we compare the 1st & 2nd order moments of 
the signal images, i.e.:

– the location of the signal in pads and time bins

– the widths of the signal in pads and time bins

– the tilt of the signal in the pad-time matrix

▶ Also looking at the integrated amplitudes

Metrics
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▶ Start with a simple preliminary metric: we compare the 1st & 2nd order moments of 
the signal images, i.e.:

– the location of the signal in pads and time bins

– the widths of the signal in pads and time bins

– the tilt of the signal in the pad-time matrix

▶ Also looking at the integrated amplitudes

▶ All this as a function of track segment parameters (2 angles + 3 coordinates)

Metrics
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Explaining the profiles 
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Input variable
(e.g. crossing angle)
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Mean ± 1 standard deviation

Widths of the shaded lines 
correspond to the 

statistical uncertainties
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Sigma1
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Results (profiles)
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“Real”
Generated

27

Mostly good 
agreement



MPD Physics ForumArtem Maevskiy, et. al. 28

Results (profiles)

“Real”
Generated

Integrated amplitude 
can be factorized out 
and simulated 
separately from 1st 
principles

Mostly good 
agreement



▶ The model was integrated into the MPD software which 
allows to validate the reconstruction-level characteristics 
as well

▶ Estimated the speed-up to be of x12
– Measured on a single core of an Intel Core i7-3770K (3.50GHz) CPU

Reconstructed characteristics
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▶ Note: the model was only trained on the responses from 
the short pads, while applied for the whole TPC

Reconstructed characteristics
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▶ The model was integrated into the MPD software which 
allows to validate the reconstruction-level characteristics 
as well

▶ Estimated the speed-up to be of x12
– Measured on a single core of an Intel Core i7-3770K (3.50GHz) CPU

▶ Note: the model was only trained on the responses from 
the short pads, while applied for the whole TPC

▶ Simulated central Au+Au collisions at 𝑠%% = 9 GeV

▶ Comparison made on pions with 𝑦 < 0.5, 𝑛&'() ≥ 20

Reconstructed characteristics
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Figure 3. Distance of closest approach resolution as a function of the transverse momen-
tum (a,b and c); momentum resolution as a function of the full momentum (d).

Finally, Fig. 5 shows the efficiency of matching the tracks to the signals from the Time-
of-Flight (TOF) system of the MPD detector as a function of the transverse momentum
and rapidity (Figs. 5a and 5b, respectively), and the distribution of the number of hits on
track (Fig. 5c). The demonstrated agreement is excellent for the TOF matching efficiency,
while the number of hits distributions are slightly inconsistent, with our model resulting
in a slightly larger number of hits measured for a track. This effect is consistent with the
overestimated momentum resolution and can be explained by training the model on the
data from only the short TPC pads while utilizing it for the whole detector.

To demonstrate that not taking into account the difference between the long and short
pads may result in the observed discrepancies, we plot distributions of deviations �x =

xreconstructed � xtrue of the reconstructed from the true cluster coordinates for rows of short
(pad row 20) and long (pad row 40) pads in Fig. 6, where x is the coordinate along the
pad row direction. This should reflect the coordinate resolution of the pads. As one would
expect, the GAN predictions are similar for both short and long pads, and in a reasonable
agreement with the detailed simulation results for the short pads, with slight inconsistencies

– 9 –
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▶ DCA resolution well 
reproduced

▶ Momentum resolution 
overestimated

– as one would expect with 
short pads everywhere
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▶ Reasonable 
agreement for the 
reconstruction 
efficiencies
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Figure 5. TOF matching efficiencies over transverse momentum (a) and rapidity (b) and
distribution of the number of hits per track (c)

model to only predict the integrated amplitude. Investigation of the dE/dx performance,
however, is beyond the scope of this work.

Along with possible enhancements in the amplitude modeling and incorporating the
pad type into our model, further developments could introduce various particle types and
momentum of the particle at a given track segment as additional input parameters. It is
also important to evaluate the bias introduced by factorizing the responses at the adjacent
pad rows.

To evaluate the performance speed-up, we run the detailed and fast TPC models on a
single core of an Intel Core i7-3770K (3.50GHz) CPU, with no GPU acceleration. These
tests show the GAN model integrated into the MPD software running 12 times faster
compared to the detailed simulation on the central Au+Au events.

– 11 –

▶ Good agreement in the 
TOF matching efficiencies

▶ Overestimated number of 
hits per track

– again, as one would expect 
with short pads everywhere



9

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2
1

10

210

310

410

En
tri

es

simulation, pad row 40
simulation, pad row 20
GAN, pad row 40
GAN, pad row 20

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

x [cm]Δ

0.5

1

1.5
G

AN
 / 

si
m

ul
at

io
n

Fig. 7. Distributions of differences Dx = xreconstructed � xtrue
between the reconstructed and true cluster coordinates along
the pad row direction. For the short (long) pads from the pad
row 20 (40), the detailed simulation results are shown in the
dark (light) gray shaded histogram, while the histogram for
the GAN prediction is shown with the red (magenta) line.
The ratios between the GAN and detailed simulation yields
in the same pad rows are shown in the bottom part of the
plot.
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▶ Promising results

– Reasonable quality according to the simple metrics and reconstruction-level characteristics

▶ 12x improvement in speed wrt detailed TPC digitization

▶ These results are submitted to EPJC (https://arxiv.org/abs/2012.04595)

▶ Major TODOs:

– Include training on responses from the long pads as well

– Introduce more input parameters: various particle types and 𝑝!

Summary
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We aim to strengthen the collaboration between HSE and JINR and further 
improve MPD fast simulation!

https://arxiv.org/abs/2012.04595


Thank you!
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›

Backup



›

Generative Adversarial Networks



How can a neural network generate data?

MPD Physics ForumArtem Maevskiy, et. al.

Neural network

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/
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How can a neural network generate data?
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Random noize
e.g. multivariate normal

Neural network

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/

Generated data
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How can a neural network generate data?
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Random noize
e.g. multivariate normal

Neural network

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/

Generated data

▶ This makes the generated object being a differentiable function of the network 
parameters
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How can a neural network generate data?

MPD Physics ForumArtem Maevskiy, et. al.

Random noize
e.g. multivariate normal

Neural network

Generated data

▶ This makes the generated object being a differentiable function of the network 
parameters

detector 
response
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▶ Generated object is a differentiable function of the network parameters

▶ Need a differentiable measure of similarity between the generated objects and 
real ones

– Can optimize with gradient descent

▶ How to find such a measure?

How to train such a generator?
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▶ Measure of similarity: how well can another neural network (discriminator) tell the 
generated objects apart from the real ones

Adversarial approach

MPD Physics ForumArtem Maevskiy, et. al.

Random noize

Generator network
Generated data

“Real” data

Discriminator network

Separate real 
objects from 

generated

Goodfellow et al., Generative Adversarial Networks, 
arXiv:1406.2661 [stat.ML]
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›

Output layer activation functions



▶ The signal we’re training on is set to 0 
for signals below 1

▶ Problematic for a GAN to learn

▶ May be able to handle with a proper 
output layer activation

Generator output layer activation
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RELU



▶ The signal we’re training on is set to 0 
for signals below 1

▶ Problematic for a GAN to learn

▶ May be able to handle with a proper 
output layer activation

Generator output layer activation
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ELU



▶ The signal we’re training on is set to 0 
for signals below 1

▶ Problematic for a GAN to learn

▶ May be able to handle with a proper 
output layer activation

Generator output layer activation
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ELU + negative shift



▶ The signal we’re training on is set to 0 
for signals below 1

▶ Problematic for a GAN to learn

▶ May be able to handle with a proper 
output layer activation

Generator output layer activation
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ELU + positive shift



▶ The signal we’re training on is set to 0 
for signals below 1

▶ Problematic for a GAN to learn

▶ May be able to handle with a proper 
output layer activation

Generator output layer activation
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Custom activation


