

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

Neutron Field Measurements by GFPC Based Monitors at the Carbon Beam of IHEP U-70 Proton Synchrotron

I.L.Azhgirey, I.S. Bayshev, V.A. Pikalov and O.V. Sumaneev, NRC "Kurchatov Institute" – IHEP, [142281] Protvino, Russia

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

The main goal of these measurements was:

rather testing of the recently developed neutron monitors [1] in a typical neutron field of a high energy accelerator,

than a comprehensive study of the neutron field at the Radiobiological Stand (RBS) facility [2].

The measurements were strongly supported by the set of extensive simulations using the well-known FLUKA code [3].

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

Neutron monitors with gas filled proportional counters (GFPC) inside were presented at RuPAC-2018.

MONITOR A (Main) – CH2 +PB+CD, $K_{AmBe} = 1.002$

MONITOR B (Complementary) - CH+CD, $K_{AmBe} = 3.218$

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

Intended Use:

- 1. Monitoring of neutron field intensity and spectrum.
- 2. Fast neutron fluence (E > 100 keV) measurements, using main monitor A (~15 % in typical accelerators spectra).

3. Use complementary monitor B for correction in soft spectra.

«KURCHATOV INSTITUTE»

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

 \iint

Schematic top view of the RBS facility

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

BEAM:

Wide beam of C12 ions with energy 434 MeV/n.

Collimator 1 is opening of 5x5 cm (~ 50 % ions through).

Timing: 236 cycles, consisting of 0.6s long pulses with 8s spacing between them.

Beam intensity was monitored by a flat air filled ionisation chamber of 200×200 mm area.

TARGET:

Water filled phantom IHEP, placed on the table at beam axis.

Internal size – 33x35x53 cm

Walls – polycarbonate, bottom and side – 1.5 cm, front and end – 3 cm. Water level – 30 cm.

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

 \mathbf{M}

View inside the RBS facility before measurements.

«KURCHATOV INSTITUTE»

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

MEASUREMENTS

The dependence of the measured rates N_A and N_B is linear within 3% at the count rates below 6000 counts/cycle or 10 kHz.

At higher rates the effect of the counter "**dead time**" breaks this linearity.

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

"Dead time" correction:

$$\frac{\mathbf{N'}}{\mathbf{T}} = \frac{\mathbf{N}}{\mathbf{T}} \cdot \exp\left(-\mathbf{\tau} \cdot \frac{\mathbf{N}}{\mathbf{T}}\right),$$

where T is the pulse duration, τ is the "dead time", N[']/T is the measured count rate and N/T is the "true" count rate.

$$r(N_B) = \frac{N'_A}{N'_B} = \frac{N_A}{N_B} \cdot \exp\left(-N_B \cdot \frac{\tau}{T} \cdot \left(\frac{N_A}{N_B} - 1\right)\right) = R \cdot \exp\left(-N_B \cdot \frac{\tau}{T} \cdot (R - 1)\right),$$

where r and R are the ratios of the measured and "true" counts respectively.

Fit the dependence $r(N_B)$ by the function $a \cdot \exp(-b \cdot N_B)$, where $a=R, b=\tau/T$ (R-1).

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

"True" counts $-N_B$ is unknown, so we need iterate N_B .

$$N_{B0} = N'_B$$
$$N'_B = N_{Bi} \cdot \exp\left(-N_{Bi} \cdot \frac{\tau_{i-1}}{T}\right).$$

 \square

\mathcal{N}_{2}	<n<sub>A/I></n<sub>	<n<sub>B/I></n<sub>	<n<sub>A/N_B></n<sub>	R	τ/Τ
0	6.64 10 ⁻⁶	2.27 10-6	2.921	3.142	6.724 10 ⁻⁶
1	7.42 10-6	2.36 10 ⁻⁶	3.152	3.141	6.455 10 ⁻⁶
2	7.39 10 ⁻⁶	2.35 10 ⁻⁶	3.141	3.141	6.465 10 ⁻⁶
3	7.39 10 ⁻⁶	2.35 10 ⁻⁶	3.141	3.141	6.464 10-6

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

 \square

Russia, 142281, Moscow region, Protvino, Nauki 1.

Ratio of the monitor counts vs "true" counts of the monitor B in iterative procedure.

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

The estimated "dead time":

 τ = 3.87 µs.

"TRUE" COUNTS correction:

$$N' = N \cdot \exp(-N \cdot \tau/T)$$

$$\frac{N}{N'} = 1.006 + 2.571 \cdot 10^{-6} \frac{N'}{T} + 6.167 \cdot 10^{-11} \left(\frac{N'}{T}\right)^2 \quad (1 - 100 \text{ kHz}, \sim 1\%)$$

Based on the "true" counts Neutron fluence at the location of the monitor A: $7.4 \times 10^{-6} \text{ cm}^{-2}$ per beam ion.

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

SIMULATIONS

Spectra at the location of our monitors A and B were calculated on the base of simulations of ion beam initiated nuclear cascades in the RBB area using the well-known code FLUKA.

They were used to obtain the value of the fast neutrons fluence and to estimate the expected monitor count rates:

$$N_0 = \frac{1}{K_{AmBe}} \int \Phi(E) \cdot R(E) / R_{AmBe} \cdot dE$$

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

 \square

Russia, 142281, Moscow region, Protvino, Nauki 1.

¹ FLUKA simulation setup at beam level with phantom, beam and monitors positions.

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

 \iint

Russia, 142281, Moscow region, Protvino, Nauki 1.

Neutron energy spectrum at the location of monitors A and B. FLUKA simulation.

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

Comparison of calculated and measured values.

 \mathbf{I}

value	Measured	calculated	
Fast neutron fluence, cm ⁻² /ion, monitor A location.	7.40×10^{-6}	7.69×10^{-6}	
counts/ion, monitor A	7.39×10^{-6}	7.91×10^{-6}	
counts/ion, monitor B	2.35×10^{-6}	2.05×10^{-6}	
Counts ratio,	3.14	3.87	
monitor A / monitor B			

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

CONCLUSION

Two recently developed neutron monitors were used for measurements in the area of the Radiobiological Stand facility at IHEP: the monitor A - to measure the fluence of fast neutrons, the monitor B – to estimate the GFPC "dead time" and thus to correct the readings of monitor A at the count rates exceeding 10 kHz. A good agreement of the simulated with FLUKA and measured values gives us a preliminary validation of our interpretation of the main monitor as a fluence meter, though the interpretation efforts must be continued.

INSTITUTE FOR HIGH ENERGY PHYSICS named by A.A. LOGUNOV

Russia, 142281, Moscow region, Protvino, Nauki 1.

REFERENCES

[[]

- [1] I.L. Azhgirey, I.S. Bayshev, I.A. Kurochkin, V.A. Pikalov, O.V. Sumaneev, V.S. Lukanin, "Neutron Monitors for High Energy Accelerators", TUPSA38, Proceedings RuPAC2018, Protvino, Russia, pp.224-226.
- [2] Yu.M. Antipov, G.I. Britvich, S.V. Ivanov et al., "Formation of Transversely Flat Dose Field and First Radiobiological Experiments on the U-70 Extracted Carbon Beam", Pribory I Tehnika Eksperimenta, 2015, № 4, pp. 107-116.
 [3] G. Battistoni, T. Boehlen, F. Cerutti, P.W. Chin, L.S. Esposito, A. Fassò, A. Ferrari, A. Lechner, A. Empl, A. Mairani, A. Mereghetti, P. Garcia Ortega, J. Ranft, S. Roesler, P.R. Sala, V. Vlachoudis, G. Smirnov, "Overview of the FLUKA code", Annals of Nuclear Energy 82,2015, pp.10-18.