Longitudinal double-spin asymmetries for charmonium production

M.A.Nefedov

03.03.2021

 $1 \, / \, 14$

Outline

- Short theoretical introduction: NRQCD-factorization and asymmetries
- \blacktriangleright Observables: p_T vs. rapidity-differential
- ▶ p_T -differential asymmetries at LO
- ▶ situation at NLO

A bit of history

Historically, the first model of heavy-quarkonium production was the **color-singlet model**: The production of state X_Q $(J/\psi, \chi_{cJ}, ..., \Upsilon(nS), \chi_{bJ}, ...)$ is dominated by production of **color-singlet** $Q\bar{Q}$ -pair with L and S quantum numbers given by NR potential model for this state. Probability of hadronization is proportional to $|\Psi^{(k)}(0)|^2$, (k = 0, 1, ...) from potential model. This model has two problems:

- ► Leads to a wrong shape of p_T -spectrum at high energies (Tevatron, LHC) both at LO and NLO of CPM and in k_T -factorization, which **under-estimates** the cross-section for $p_T > 10$ GeV by factor of 30 (*Tevatron* $\psi(2S)$ puzzle).
- ► Is theoretically inconsistent at NLO for production of *P*-wave states: In QCD, non-cancelling IR-divergences arise at NLO.

NRQCD factorization

To solve above-mentioned problems, two approaches have been proposed: **NRQCD-factorization** and **Color-Evaporation Model**.

▶ NRQCD-factorization: Different L, S and color states of $Q\bar{Q}$ -pair hadronize to X with different "probability" – long-distance matrix element (LDME): $\langle \mathcal{O}^X \begin{bmatrix} 2S+1 L_J^{(\text{color})} \end{bmatrix} \rangle.$

► LDME-s of states different from CSM-state are suppressed by powers of v^2 (~ 0.3 for J/ψ , ~ 0.1 for Υ) – *velocity-scaling rules* for LDMEs. E.g. for J/ψ and $\psi(2S)$: CSM= ${}^{3}S_{1}^{(1)} = O(1)$ and ${}^{3}P_{J}^{(8)}$ and ${}^{3}S_{1}^{(8)}$, ${}^{1}S_{0}^{(8)}$, contribute up to $O(v^{4})$.

Double-spin asymmetry

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\Delta\sigma}{\sigma},$$

 $Collinear\ Parton\ Model + \ NRQCD\ factorization:$

$$\Delta \sigma = \sum_{n} \left\langle \mathcal{O}^{X}[n] \right\rangle \sum_{i,j} \Delta f_{i} \otimes \Delta f_{j} \otimes \Delta \hat{\sigma}_{ij}[n],$$

$$\sigma = \sum_{\boldsymbol{n}} \left\langle \mathcal{O}^{X}[\boldsymbol{n}] \right\rangle \sum_{i,j} f_{i} \otimes f_{j} \otimes \hat{\sigma}_{ij}[\boldsymbol{n}].$$

Possible observables:

▶ p_T -dependent (and y-dependent) asymmetry:

- ▶ 2 → 2: $i + j \rightarrow c\bar{c}[n] + k$ processes at LO ⇒ **NLO-complicated**
- ► scale $\mu \sim \sqrt{M^2 + p_T^2}$, CPM valid for $p_T > M$

▶ p_T -integrated, y-dependent asymmetry

▶ 2 → 1: $i + j \to c\bar{c}[n]$ processes at LO ⇒ **NLO-simple** (but not done yet...)

$$\blacktriangleright$$
 scale $\mu \sim M$

Some references

- ▶ Un-polarized partonic cross-sections $\hat{\sigma}_{ij}[n]$ are well-known at LO.
- ▶ p_T -dependent asymmetry first studied at LO in [Teryaev, Tkabladze, Phys.Rev.D 56 (1997) 7331-7340], but expressions for $\Delta \hat{\sigma}_{ij}[n]$ are not given
- ► LO results for $\Delta \hat{\sigma}_{ij}[n]$ are written in [Klasen, Kniehl, Steinhauser, Phys.Rev.D **68** (2003) 034017, hep-ph/0306080], however I have some issues with this results, they need to be checked. In the present analysis **only gluon-gluon channels** are included, which I have reproduced.
- ▶ p_T-dependent asymmetry was studied at NLO in [Feng, Zhang, JHEP 11 (2018) 136]
- ▶ p_T -integrated asymmetry first studied in [Gupta, Mathews, Phys.Rev.D 55 (1997) 7144-7151]
- ▶ NLO results for **un-polarized** *p_T***-integrated** partonic cross-sections had been obtained in closed form in [Petrelli, Cacciari, Greco, Maltoni, Mangano, Nucl.Phys.B **514** (1998) 245-309]

Validation: PHENIX data

LO LDMEs from [Braaten, Kniehl, Lee, Phys.Rev.D62 (2000) 094005] together with NNPDF30_nlo_as_0119_nf_6 PDF set and NNPDFpol11_100 polarized PDF set.

The J/ψ p_T -spectrum from RHIC had been reproduced, taking into account direct and feed-down contributions:

Asymmetry and uncertainties

At LO, main uncertainty in LDMEs comes from the fact, that LO fits determine only linear combination of LDMEs:

Bands – scale uncertainties, blue curves – \mathcal{M}_8 saturated by ${}^1S_0^{(1)}$, orange – ${}^3P_0^{(1)}$. 8 / 14

Validation: PHENIX data

Plot from hep-ex/1606.01815:

LO LDMEs from [Braaten, Kniehl, Lee, Phys.Rev.D62 (2000) 094005] together with NNPDF30_nlo_as_0119_nf_6 PDF set and NNPDFpol11_100 polarized PDF set.

Results for different replicas of Δg vs. PHENIX data:

LO asymmetry at 24 GeV

 A_{LL} for ten replicas of Δg :

 $10 \, / \, 14$

LO asymmetry at 24 GeV

LO asymmetry at 24 GeV

12/14

CAUTION: different LDME sets at NLO!

Compare A_{LL} for different replicas:

with it's LDME-set dependence at NLO [Feng, Zhang, JHEP 11 (2018) 136]:

13 / 14

Outlook

- ▶ A_{LL} up to 10% for J/ψ at NICA is consistent with latest NNPDF parametrization for Δg
- ▶ At LO, LDME and scale uncertainties look small, but this may be misleading
- Estimates in color-evaporation model should be done
- LDME sets predicting different polarization of quarkonium at high-p_T lead to significantly different asymmetry at RHIC. Impact for NICA is not clear...
- ▶ if color-singlet model for η_c is correct, then there is no LDME-set problem for this state!

Thank you for your attention!