Longitudinal double-spin asymmetries for charmonium production

M.A.Nefedov

03.03.2021

Outline

- Short theoretical introduction: NRQCD-factorization and asymmetries
- Observables: p_{T} vs. rapidity-differential
- p_{T}-differential asymmetries at LO
- situation at NLO

A bit of history

Historically, the first model of heavy-quarkonium production was the color-singlet model: The production of state X_{Q} $\left(J / \psi, \chi_{c J}, \ldots, \Upsilon(n S), \chi_{b J}, \ldots\right)$ is dominated by production of color-singlet $Q \bar{Q}$-pair with L and S quantum numbers given by $N R$ potential model for this state. Probability of hadronization is proportional to $\left|\Psi^{(k)}(0)\right|^{2},(k=0,1, \ldots)$ from potential model. This model has two problems:

- Leads to a wrong shape of p_{T}-spectrum at high energies (Tevatron, LHC) both at LO and NLO of CPM and in k_{T}-factorization, which under-estimates the cross-section for $p_{T}>10 \mathrm{GeV}$ by factor of 30 (Tevatron $\psi(2 S)$ puzzle).
- Is theoretically inconsistent at NLO for production of P-wave states: In QCD, non-cancelling IR-divergences arise at NLO.

NRQCD factorization

To solve above-mentioned problems, two approaches have been proposed: NRQCD-factorization and Color-Evaporation Model.

- NRQCD-factorization: Different L, S and color states of $Q \bar{Q}$-pair hadronize to X with different "probability" -long-distance matrix element (LDME):
$\left\langle\mathcal{O}^{X}\left[{ }^{2 S+1} L_{J}^{\text {(color) }}\right]\right\rangle$.
- LDME-s of states different from CSM-state are suppressed by powers of $v^{2}(\sim 0.3$ for $J / \psi, \sim 0.1$ for $\Upsilon)$ - velocity-scaling rules for LDMEs. E.g. for J / ψ and $\psi(2 S)$: $\mathrm{CSM}={ }^{3} S_{1}^{(1)}=O(1)$ and ${ }^{3} P_{J}^{(8)}$ and ${ }^{3} S_{1}^{(8)},{ }^{1} S_{0}^{(8)}$, contribute up to $O\left(v^{4}\right)$.

Double-spin asymmetry

$$
A_{L L}=\frac{\sigma_{++}-\sigma_{+-}}{\sigma_{++}+\sigma_{+-}}=\frac{\Delta \sigma}{\sigma}
$$

Collinear Parton Model + NRQCD-factorization:

$$
\begin{gathered}
\Delta \sigma=\sum_{n}\left\langle\mathcal{O}^{X}[n]\right\rangle \sum_{i, j} \Delta f_{i} \otimes \Delta f_{j} \otimes \Delta \hat{\sigma}_{i j}[n] \\
\sigma=\sum_{n}\left\langle\mathcal{O}^{X}[n]\right\rangle \sum_{i, j} f_{i} \otimes f_{j} \otimes \hat{\sigma}_{i j}[n]
\end{gathered}
$$

Possible observables:

- p_{T}-dependent (and y-dependent) asymmetry:
- $2 \rightarrow 2: i+j \rightarrow c \bar{c}[n]+k$ processes at $\mathrm{LO} \Rightarrow$ NLO-complicated
- scale $\mu \sim \sqrt{M^{2}+p_{T}^{2}}$, CPM valid for $p_{T}>M$
- p_{T}-integrated, y-dependent asymmetry
- $2 \rightarrow 1: i+j \rightarrow c \bar{c}[n]$ processes at $\mathrm{LO} \Rightarrow$ NLO-simple (but not done yet...)
- scale $\mu \sim M$

Some references

- Un-polarized partonic cross-sections $\hat{\sigma}_{i j}[n]$ are well-known at LO.
- p_{T}-dependent asymmetry first studied at LO in [Teryaev, Tkabladze, Phys.Rev.D 56 (1997) 7331-7340], but expressions for $\Delta \hat{\sigma}_{i j}[n]$ are not given
- LO results for $\Delta \hat{\sigma}_{i j}[n]$ are written in [Klasen, Kniehl, Steinhauser, Phys.Rev.D 68 (2003) 034017, hep-ph/0306080], however I have some issues with this results, they need to be checked. In the present analysis only gluon-gluon channels are included, which I have reproduced.
- p_{T}-dependent asymmetry was studied at NLO in [Feng, Zhang, JHEP 11 (2018) 136]
- p_{T}-integrated asymmetry first studied in [Gupta, Mathews, Phys.Rev.D 55 (1997) 7144-7151]
- NLO results for un-polarized p_{T}-integrated partonic cross-sections had been obtained in closed form in [Petrelli, Cacciari, Greco, Maltoni, Mangano, Nucl.Phys.B 514 (1998) 245-309]

Validation: PHENIX data

LO LDMEs from [Braaten, Kniehl, Lee, Phys.Rev.D62 (2000) 094005] together with NNPDF30_nlo_as_0119_nf_6 PDF set and NNPDFpol11_100 polarized PDF set.
The $J / \psi p_{T}$-spectrum from RHIC had been reproduced, taking into account direct and feed-down contributions:

Asymmetry and uncertainties

At LO, main uncertainty in LDMEs comes from the fact, that LO fits determine only linear combination of LDMEs:

$$
\begin{gathered}
\mathcal{M}_{8}=\left\langle\mathcal{O}^{J / \psi}\left[{ }^{1} S_{0}^{(8)}\right]\right\rangle+\frac{r}{m_{c}^{2}}\left\langle\mathcal{O}^{J / \psi}\left[{ }^{3} P_{0}^{(8)}\right]\right\rangle, r=3.5 \\
\text { PHENIX, } \sqrt{s}=200 \mathrm{GeV},|y|<0.35 \\
0.0008 \\
0.0006 \\
0.0002
\end{gathered}
$$

Bands - scale uncertainties, blue curves - \mathcal{M}_{8} saturated by ${ }^{1} S_{0}^{(1)}$, orange $-{ }^{3} P_{0}^{(1)}$.

Validation: PHENIX data

Plot from hep-ex/1606.01815:

LO LDMEs from [Braaten, Kniehl, Lee, Phys.Rev.D62 (2000) 094005] together with NNPDF30_nlo_as_0119_nf_6 PDF set and NNPDFpol11_100 polarized PDF set.

Results for different replicas of Δg vs. PHENIX data:

LO asymmetry at 24 GeV

$A_{L L}$ for ten replicas of Δg :

LO asymmetry at 24 GeV

$A_{L L}$ for ten replicas of Δg, band- scale:

LO asymmetry at 24 GeV

$A_{L L}$ for ten replicas of Δg, bands - scale and LDME-variation :

CAUTION: different LDME sets at NLO!

Compare $A_{L L}$ for different replicas:

with it's LDME-set dependence at NLO [Feng, Zhang, JHEP 11 (2018) 136]:

Outlook

- $A_{L L}$ up to 10% for J / ψ at NICA is consistent with latest NNPDF parametrization for Δg
- At LO, LDME and scale uncertainties look small, but this may be misleading
- Estimates in color-evaporation model should be done
- LDME sets predicting different polarization of quarkonium at high $-p_{T}$ lead to significantly different asymmetry at RHIC. Impact for NICA is not clear...
- if color-singlet model for η_{c} is correct, then there is no LDME-set problem for this state!

Thank you for your attention!

