Arkadiy Taranenko National Research Nuclear University MEPhI

for the MPD Collaboration

Status of the MPD experiment at NICA

The Critical Point and Onset of Deconfinement Conference (CPOD 2021) March 15 - 19, 2021

Scan of the phase diagram of QCD matter

Anisotropic Flow at NICA energies

Anisotropic flow at NICA energies is a delicate balance between: (i) the ability of pressure developed early in the reaction zone and (ii) the passage time for removal of the shadowing by spectators

Elliptic flow at NICA energies: Models vs Data comparison

Pure String/Hadronic Cascade models give smaller v₂ signal compared to STAR data for Au+Au $\sqrt{s_{NN}}$ =7.7 GeV and above

Elliptic flow at NICA energies: Models vs Data comparison

Pure String/Hadronic Cascade models give similar v_2 signal compared to STAR data for Au+Au $\sqrt{s_{NN}}$ =4.5 GeV

NICA Accelerator Complex in Dubna

Multi Purpose Detector (MPD) Collaboration

Shandong University, Shandong, China;

SINP, Moscow, **Russia**; PNPI, Gatchina**, Russia**;

MPD Civil Construction status

• MPD Hall ready for limited scope of equipment installation, remaining works still ongoing

NICA Milestones of MPD assembling in 2020-2022

Year 2020

1.	July 15 th	 MPD Hall and pit are ready to store and unpack Yoke parts
2.	August	- The first 13 plates of Magnet Yoke are assembled for alignment checks
3.	Sept 15 - Oct 1st	- Solenoid is ready for transportation from ASG (Italy)
4.	November 6 th	- Solenoid arrived in Dubna
5.	Nov-Dec -	Assembling of Magnet Yoke at JINR
		Year 2021
6.	Jan- Sep	- Preparation for switching on the Solenoid (Cryogenics, Power Supply et cet.)
7.	Oct - Nov	- Magnetic Field measurement
8.	Dec	- Installation of Support Frame
		Year 2022
9.	Jan- Jun	 Installation of TOF, TPC, Electronics Platform, Cabling
10.	Jul -	Installation of beam pipe, FHCal, Cosmic Ray test system
11.	Jul-Dec	- Cosmic Ray tests

12. December - Commissioning

•

Year 2023 - Run on the beam

13. March

Centrality determination in MPD : multiplicity of charged particles

Centrality using energy of spectators in FHCal

2500

2000

1500

1000

\$0[cm

-40

-40

Energy distribution in FHCal modules

Hadroproduction with MPD

- Particle spectra, yields & ratios are sensitive to bulk fireball properties and phase transformations in the medium
- Uniform acceptance and large phase coverage are crucial for precise mapping of the QCD phase diagram
 - ✓ 0-5% central Au+Au at 9 GeV from the PHSD event generator, which implements partonic phase and CSR effects
 ✓ Recent reconstruction chain, combined dE/dx+TOF particle ID, spectra analysis

- MPD provides large phase-space coverage for identified pions and kaons (> 70% of the full phasespace at 9 GeV)
- Hadron spectra can be measured from $p_T=0.2$ to 2.5 GeV/c
- Extrapolation to full p_T-range and to the full phase space can be performed exploiting the spectra shapes (see BW fits for p_T-spectra and Gaussian for rapidity distributions)

Strange and multi-strange baryons

Stage'1 (TPC+TOF): Au+Au @ 11 GeV, PHSD + MPDRoot reco.

Efficiency and p_{τ} spectrum

Full p_{T} spectrum and yield extraction, reasonable efficiency down to low p_{T}

Hypernuclei at MPD

astrophysical research indicates the appearance of hyperons in the dense core of a **neutron star** Stage 2: central Au+Au @ 5 AGeV; DCM-QGSM

hyper nucleus	yield in 10 weeks
³ ∧He	9 · 10 ⁵
^₄ ∧He	1 · 10 ⁵

NICA

Resonances at MPD

· Minbias Au+Au@11 (UrQMD) · Full reconstruction and realistic PID · Topology cuts and secondary vertex · Event mixing for background

NICA Efficiencies and closure tests examples

· Minbias Au+Au@11 (UrQMD) · Full reconstruction and realistic PID · Topology cuts and secondary vertex · Event mixing for background

Performance study of v₂ of pions and protons in MPD

Reconstructed and generated v_2 of pions and protons have a good agreement for all methods

Summary

- The NICA Accelerator Complex in construction with important milestones achieved and clear plans for 2021 and 2022
- All components of the MPD 1st stage detector advanced in production, commissioning expected for 2022
- Intensive preparations for the MPD Physics program with initial beams at NICA in 2023

Thank you for you attention

Backup

Setup, event and track selection

Performance study for v₂ of V0 particles

Reasonable agreement between reconstructed and generated v_2 signals for both K⁰ and A

Event plane method using v_1 of particles in FHCal

Using v_1 of particles in FHCal to determine Q_n

$$Q_{1} = \frac{\sum E_{i} e^{i\varphi_{i}}}{\sum E_{i}}, \Psi_{1,\text{FHCal}} = \tan^{-1}\left(\frac{Q_{1,y}}{Q_{1,x}}\right) \quad (1)$$

E – energy deposition in FHCal modules ($2 < |\eta| < 5$)

$$R_n\{\Psi_{1,\text{FHCal}}\} = \langle \cos[n(\Psi_{\text{RP}} - \Psi_{1,\text{FHCal}})] \rangle \quad (2)$$

$$v_2\{\Psi_{1,\text{FHCal}}\} = \frac{\langle \cos[n(\varphi - \Psi_{1,\text{FHCal}})]\rangle}{R_n\{\Psi_{1,\text{FHCal}}\}}$$
(3)

Energy distribution in FHCal