

SPD S&C meeting, 20 April 2021

Example for short-lived particles reconstruction in SPD experiment

<u>V. Andreev</u>

- 1. generation some sample (as example, Minimum Bias events with Pythia8), you can use macro XSimuQsI.C for this purpose
- 2. reconstruction run track fit and vertex reconstruction tasks, use standard macro for this case RecoEventFull.C
- 3. find decay particle (example of macro for $K_{s^0} \rightarrow pi + pi$ decay on the base of KFParticle package), use macro findDecayK0.C

V0 finder (some detail)

1. example is done on the base of standard Artur's example ReadRecoData.C

2. some input parameters:

<pre>a) fMinItsHists = 3 b) fDaughters[2] = {-211, 211}</pre>	 minimum Its hits for track selection decay mode of K⁰
or {2212, -211} c) hardTrackCut = true(false)	- decay mode of Λ^{0} - hard track selection (tpars->GetIsGood())
d) fMinChi2PV = 2.0 e) fMinChi2Part = 2.0	 minimum chi2 track to PV (primary selection) minimum chi2 between 2 tracks (primary selection)
f) fMinChi2PVadd = 30.0 g) fMinL/dLcut = 15.0	 chi2 track to PV (additional cut) L/dL cut (additional cut), L – decay length, dL – error of L

- 3. primary track selection is done on the base of track selection parameters a), b), c) and after KFparticle array is produced
- 4. loop inside KFparticle array and determine V0 candidate (pi+pi- pair) parameters (invariant mass, decay length and so on) using PV and track fit parameters

$$\chi^2_{prim} = \Delta \mathbf{r}^T (C_{track} + C_{PV})^{-1} \Delta \mathbf{r},$$

where Δr – distance between track and the primary vertex position, C_{track} is covariance matrix of a track and C_{pv} is a covariance matrix of primary vertex

K⁰ -> **pi**+**pi**- (**MB**)

K⁰ -> pi+pi-

Armenteros Podolanski

Λ⁰ -> p+pi- (MB)

Λº-> p+pi-

Armenteros Podolanski

