The effect of bias in centrality determination in flow measurements

Dim Idrisov, Petr Parfenov, Vinh Luong, Ilya Segal, Arkadiy Taranenko NRNU MEPhI

VII-th Collaboration Meeting of the MPD Experiment at the NICA Facility 23 April 2021

This work is supported by: the RFBR according to the research project No. 18-02-40086 and No. 18-02-40065 the European Union's Horizon 2020 research and innovation program under grant agreement No. 871072

Outline

- Introduction
- Description of event plane and Q-Cumulants methods for flow measurements
- Methods of centrality determination based on charged particle multiplicity
- The effect of bias in centrality determination for flow analysis:
 - comparison of different models and energies
 - performance study of v₂ of charged hadrons in MPD
- Summary and outlook

Anisotropic flow in HIC

•Initial eccentricity (and its attendant fluctuations) ε_n drives momentum anisotropy v_n with specific viscous modulation • v_1 - directed flow, v_2 - elliptic flow, v_3 - triangular flow • v_n (p_{T_r} centrality):

sensitive to the early stages of collision important constraint for transport properties: EoS, η/s , ζ/s , etc.

Jacopo Margutti, et al., Nuclear Physics A 982, 367-370 (2019)

Dependence of anisotropic flow on centrality

The methods for flow measurements

Event Plane:

$$\mathbf{v}_{2}^{\mathrm{EP}}\left\{\mathrm{TPC}\right\} = \frac{\left\langle \cos\left[2\left(\varphi - \Psi_{2,\eta\pm}\right)\right]\right\rangle}{R_{2}^{EP}\left\{\Psi_{2,\mathrm{TPC}}\right\}} \qquad (1)$$

Q-cumulants:

2 and 4 particle azimuthal correlations

$$\left\langle \mathbf{v}_{n}^{2}\right\rangle \simeq \left\langle e^{in(\varphi_{1}-\varphi_{2})}\right\rangle$$
 (2)

$$\left\langle \mathbf{v}_{n}^{4}\right\rangle \simeq \left\langle e^{in(\varphi_{1}+\varphi_{2}-\varphi_{3}-\varphi_{4})}\right\rangle - 2\cdot \left\langle e^{in(\varphi_{1}-\varphi_{3})}\right\rangle \left\langle e^{in(\varphi_{2}-\varphi_{4})}\right\rangle$$
(3)

Elliptic flow estimate with direct cumulant method

$$\left\langle \mathbf{v}_{n}^{2}\right\rangle = \frac{\left|Q_{n}\right|^{2} - M}{M\left(M - 1\right)}$$
 (4) where $Q_{n} = \sum_{i=1}^{M} e^{in\varphi_{i}}$ (5)

Phys. Rev. C83:044913, 2011

Initial geometry of HIC

- Evolution of matter produced in heavy-ion collisions depend on its initial geometry
- Centrality procedure maps initial geometry parameters with measurable quantities
- This allows comparison of the future MPD results with the data from other experiments (STAR BES, NA49/NA61 scans) and theoretical models

Collision geometry

• Models:

Impact parameter b

- Measurable quantities (Experiment):
- Multiplicity or transverse energy of the produced particles
- Energy of the spectators

Ann.Rev.Nucl.Part.Sci. 57 (2007) 205-243

MC-Glauber based centrality framework

This centrality procedure was used in CBM, NA49, and NA61/SHINE: **.I. Segal, I. Selyuzhenkov et al., J.Phys.Conf.Ser. 1690** (2020) 1, 012107 **.V. Klochkov, I. Selyuzhenkov et al., EPJ Web Conf. 182** (2018) 02132 Implemantation for MPD: <u>https://github.com/FlowNICA/CentralityFramework</u>

 $\mathbf{\mu}$ – mean multiplicity value \mathbf{k} – width of the multiplicity distribution, can be connected to

•**k** – width of the multiplicity distribution, can the fluctuations

The Bayesian inversion method (Γ-fit): main assumptions

•Relation between multiplicity N_{ch} and impact parameter b is defined by the fluctuation kernel:

 $P_{inel}(b)$ – probability of inelastic NN collision ($P_{inel}(b)\approx 1$)

R. Rogly, G. Giacalone and J. Y. Ollitrault, Phys.Rev. C98 (2018) no.2, 024902 Implementation in MPD: <u>https://github.com/Dim23/GammaFit</u>

Reconstruction of *b*

 $P(b|N_{ch}) = \frac{P(N_{ch}|b)P(b)}{P(n)}$ $P(b|n_1 < N_{ch} < n_2) = P(b)\frac{\int_{n_1}^{n_2} P(b|n)dn}{\int_{n_1}^{n_2} P(n)dn}$

• Find probability of *b* for fixed N_{ch} using Bayes' theorem:

- The Bayesian inversion method consists of 2 steps:
- -Fit normalized multiplicity distribution with $P(N_{ch})$

-Construct $P(b|N_{ch})$ using Bayes' theorem with parameters from the fit

Results of fit

Good fit quality for both methods

Simulated data sets:

- Au+Au, N_{ev}=500k, √s_{NN}=4.5, 7.7, 11.5 GeV

Hadron selection:

- |η|<0.5
- Charged particles only

• p_T>0.15 GeV/c

Models and statistics

Au+Au, min. bias

- UrQMD ver. 3.4 in cascade mode:
- ▹ √s_{NN} = 11.5 GeV: 50M
- ▹ Vs_{NN} = 7.7 GeV: 88M
- Vs_{NN} = 4.5 GeV: 115M

- AMPT SM, ver. 1.26 with string melting mode ver. 2.26, σ_{part} =1.5 mb:
 - ✓s_{NN} = 11.5 GeV: 60M
 - ✓s_{NN} = 7.7 GeV: 42M
 - ✓ √s_{NN} = 4.5 GeV: 80M

- DCM-QGSM-SMM:
 - ▶ √s_{NN} = 11.5 GeV: 10M
 - ✓ √s_{NN} = 7.7 GeV: 10M
 - ✓ √s_{NN} = 4.5 GeV: 10M

Elliptic flow in UrQMD and AMPT

At $Vs_{NN} \ge 7.7$ GeV pure string/hadronic cascade models underestimate v_2 – need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...)

The effect of bias in centrality determination in flow measurements for UrQMD model

The v_2 are in good agreement for all methods

The effect of bias in centrality determination in flow measurements for AMPT model

The v_2 are in good agreement for all methods

The effect of bias in centrality determination in flow measurements for DCM-QGSM-SMM model

The v_2 are in good agreement for all methods

The effect of bias in centrality determination in flow measurements for UrQMD model at NICA energies

- Difference for v_2 {2} at 4.5 GeV using different centrality estimators is within 1-4%.
- Better agreement at higher energies.

The effect of bias in centrality determination in flow measurements for AMPT model at NICA energies

- Difference for v_2 {2} at 4.5 GeV using different centrality estimators is within 1-4%.
- Better agreement at higher energies.

The effect of bias in centrality determination in flow measurements for DCM-QGSM-SMM model at NICA energies

The $v_2\{2\}$ are in good agreement for all energies

MPD Experiment at NICA

Performance of v_2 of charged hadrons in MPD

Vinh Ba Luong, Dim Idrisov et al 2103.05064 [nucl-ex]

Reconstructed and generated v_2 of charged hadrons have a good agreement for all methods

The effect of bias in centrality determination in MPD

Agreement within statistical errors for all methods

Summary and outlook

- The effect of bias in centrality determination for flow analysis for models:
 - Fitted functions from both methods reproduce charged particle multiplicity
 - Comparison of V₂ using two centrality estimators shows a good agreement for all models (UrQMD, AMPT, DCM-QGSM-SMM)
 - The effect of bias in centrality determination is most expressed for the UrQMD and AMPT model at Vs_{NN} = 4.5 GeV
- The results from the reconstructed data obtained using the two methods for determining centrality are in good agreement.
- Make comparison of V₂ measurements using the centrality determination based on FHCal

Thanks for your attention!

Backup

Fit of N_{ch}: UrQMD

Good fit quality for both methods

Fit of N_{ch}: AMPT SM, σ_p =1.5 mb

Good fit quality for both methods

Fit of N_{ch}: DCM-QGSM-SMM

Good fit quality for both methods

The effect of bias in centrality determination in flow measurements for UrQMD model at NICA energies

Agreement within 1-4%

The effect of bias in centrality determination in flow measurements for UrQMD model at NICA energies

Agreement within 1-4%

The effect of bias in centrality determination in flow measurements for UrQMD model

The effect of bias in centrality determination in flow measurements for AMPT model

The effect of bias in centrality determination in flow measurements for UrQMD reconstructed data

