

Comparison of methods for elliptic flow measurements at NICA energies

Vinh Ba Luong, Dim Idrisov, Peter Parfenov, Arkadiy Taranenko National Research Nuclear University MEPhI

MPD Physics Forum

March 31, 2020

Outline

- Elliptic flow v_2 at NICA energies
- Description of event plane, scalar product, Q-Cumulants, and Lee-Yang Zeros methods for flow measurements
- Sensitivity of different methods to flow fluctuations and non-flow
- Effect of non-uniform acceptance
- Performance of v_2 of identified charged hadrons in MPD
- Comparison of Au+Au and Bi+Bi colliding systems
- Summary and outlook

Phase Diagram of the Strongly-Interacting Matter

- Top RHIC/LHC:
 - Validation of the cross-over transition leading to the sQGP
 - Access to high T, small μ_B
- Beam-energy scan programs: RHIC/ SPS/NICA/FAIR:
- Broad domain of the (T, μ_B) -plane
- Access to different systems, search for first-order phase transition and critical end point

Anisotropic Collective Flow at top RHIC/LHC

- Initial eccentricity (and its attendant fluctuations) ϵ_n drives momentum anisotropy v_n with specific viscous modulation
- v_1 directed flow, v_2 elliptic flow, v_3 triangular flow
- v_n (p_T, centrality):
 - sensitive to the early stages of collision
 - important constraint for transport properties: EoS, η/s, ζ/s, etc.

Elliptic flow at NICA energies

Taranenko et. al., Phys. Part. Nuclei **51** (2020), 309–313

- Strong energy dependence of v_2 at $\sqrt{s_{NN}} = 3-11$ GeV
 - ► $v_2 \approx 0$ at $\sqrt{s_{NN}} = 3.3$ GeV and negative below
- Lack of differential measurements of v_2 at NICA energies (p_T , centrality, PID,...)
- v₂ is sensitive to the properties of strongly interacting matter:
 - ► at $\sqrt{s_{_{NN}}}$ = 4.5 GeV pure string/hadronic cascade models (UrQMD, SMASH,...) give similar v₂ signal compared to STAR data
 - ► at $\sqrt{s_{NN}} \ge 7.7$ GeV pure string/hadronic cascade models underestimate v_2 need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...)

Event plane method using FHCal

• Using v₁ of particles in FHCal to determine Q_n

$$Q_{1} = \frac{\sum_{j} E_{i} e^{i\phi_{j}}}{\sum_{j} E_{j}}, \ \Psi_{1,\text{FHCal}} = \tan^{-1}\left(\frac{Q_{1,y}}{Q_{1,x}}\right)$$

μ 40 κ

20

0

-20

-40

-40

-20

20

n

40

X, cm

E – energy deposited in FHCal modules (2 < $|\eta| < 5$)

60

Centrality (%)

80

20

40

Recent results of v₂{Ψ_{1,FHCal}}: Particles **4** (2021), no.2, 146-158

1(

Elliptic flow measurements using TPC: Scalar product, Event-plane

\

$$u_2 = \cos 2\phi + i \sin 2\phi = e^{2i\phi}$$

$$Q_2 = \sum_{j=1}^{M} \omega_j u_{2,j}, \ \Psi_{2,\text{TPC}} = \frac{1}{2} \tan^{-1} \left(\frac{Q_{2,y}}{Q_{2,x}} \right)$$

- $v_2^{\rm SP}\{Q_{2,\rm TPC}\} = \frac{\langle u_{2,\eta\pm}Q_{2,\eta\mp}^* \rangle}{\sqrt{\langle Q_{2,\eta\pm}Q_{2,\eta\pm}^* \rangle}}$ • Scalar product:
- TPC Event-plane:

$$v_2^{\rm EP}\{\Psi_{2,\rm TPC}\} = \frac{\langle \cos\left[2(\phi_{\eta\pm} - \Psi_{2,\eta\mp})\right]\rangle}{R_2^{\rm EP}\{\Psi_{2,\rm TPC}\}}$$

$$R_2^{\rm EP}\left\{\Psi_{2,\rm TPC}\right\} = \sqrt{\left\langle \cos\left[2(\Psi_{2,\eta+} - \Psi_{2,\eta-})\right]\right\rangle}$$

Elliptic flow measurements using TPC: Q-Cumulants

Note: In this presentation, all of v_2 {2} result is obtained by subevent method to suppress non-flow contribution

Elliptic flow measurements using TPC: High-order QC and Lee-Yang Zeros

• Lee-Yang Zeros: considers all-particle correlations (N. Borghini et al., J. Phys. G **30** (2004), S1213-S1216)

$$G^{\theta}(\mathrm{i}r) = \left\langle \prod_{j=1}^{M} \left[1 + \mathrm{i}r\omega_j \cos(2(\phi_j - \theta)) \right] \right\rangle_{\mathrm{events}}$$

r – real positive variable,

 $\omega_{
m j}$ – particle weight, $\omega_j=1/M$

 θ – arbitrary reference azimuthal angle, $0 \le \theta < \pi/2$

$$v_2\{LYZ\} = V_2\{\infty\} = \left\langle \frac{j_{01}}{r_0^{\theta}} \right\rangle_{\theta}$$

 j_{01} – first root of Bessel functions of the 1-st kind j_{01} = 2.405

Sensitivity of different methods to flow fluctuations

- Elliptic flow fluctuations: $\sigma_{v2}^2 = \left\langle v_2^2 \right\rangle \left\langle v_2 \right\rangle^2$
- Assuming $\sigma_{v2} \ll \langle v_2 \rangle$ and a Gaussian form for flow fluctuations
- Fluctuations enhance v_2 {2} and suppress high-order **Q-Cumulants** compared to $\langle v_2 \rangle$:

(S. A. Voloshin, A. M. Poskanzer, and R. Snellings, Landolt-Bornstein 23 (2010), 293)

$$v_2\{2\} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle} \qquad \qquad v_2\{4\} \approx v_2\{6\} \approx v_2\{8\} \approx v_2\{\text{LYZ}\} \approx \langle v_2 \rangle - \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}$$

• TPC EP method: (M. Luzum et al., Phys. Rev. C 87 (2013) 4, 044907)

$$\langle v_2 \rangle \le v_2^{\text{EP}} \{ \Psi_{2,\text{TPC}} \} \le \sqrt{\langle v_2^2 \rangle} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v2}^2}{\langle v_2 \rangle}$$

• Scalar product:

$$v_2^{SP}\{Q_{2,\text{TPC}}\} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}$$

Models & statistics

Au+Au, min. bias

- UrQMD:
 - ► √s_{NN} = 7.7 GeV: 88M
 - ► √s_{NN} = 11.5 GeV: 50M
 - ► √s_{NN} = 4.5 GeV: 115M
- SMASH: √s_{NN} = 4.5-11.5 GeV: 64M

- vHLLE+UrQMD: √s_{NN} = 7.7-11.5 GeV: 27M
- AMPT SM, σ_p = 0.8 mb:
 - ► √s_{NN} = 11.5 GeV: 35M
 - ► √s_{NN} = 7.7 GeV: 72M
- AMPT SM, σ_p = 1.5 mb:
 - ► √s_{NN} = 11.5 GeV: 60M
 - ► √s_{NN} = 7.7 GeV: 42M

Sensitivity of different methods to flow fluctuations

 $v_2\{2\} \approx v_2^{\text{SP}}\{Q_{2,\text{TPC}}\}, v_2\{4\} < v_2\{2\}$

Comparison of high-order Q-Cumulants

Comparison between v₂{4} and v₂{LYZ}

Motivation of elliptic flow fluctuation study

- Indicate a dominant role for initial-state-driven fluctuation $\sigma_{\!_{\varepsilon 2}}$
- Provide further constraints for initial-state models, precision extraction of the temperature-dependent specific shear viscosity $\eta/s(T)$ ($v_2 = \kappa_2 \epsilon_2$)

Note: small value of the v_2 {4}/ v_2 {2} ratio corresponds to large fluctuations

v₂ fluctuations at STAR BES:

- weak dependence on collision energy
- main source: ϵ_2 fluctuations

Relative flow fluctuations of charged hadrons

STAR data: Phys.Rev.C **86**, 054908 (2012) After quality cuts, 0-80%: 4M at 7.7 GeV, 11M at 11.5 GeV

- Relative v₂ fluctuations (v₂{4}/v₂{2}) observed by STAR experiment can be reproduced both in the string/cascade models (UrQMD, SMASH) and model with QGP phase (AMPT SM, vHLLE+UrQMD)
- Dominant source of v₂ fluctuations: participant eccentricity fluctuations in the initial geometry
- Are there non-zero v_2 fluctuations at $\sqrt{s_{NN}}$ = 4.5 GeV?

Relative flow fluctuations of identified charged hadrons

Elliptic flow fluctuations show weak dependence on particle species Need more statistics

MPD Experiment at NICA

- ► |η| < 1.5
- PID based on PDG

SC Coil

\TPC \Cryostat

FD

Multi-Purpose Detector (MPD) Stage 1

Non-uniform acceptance

Acceptance correction

The applied acceptance corrections eliminated the influence of non-uniform acceptance

Performance of v_2 of pions and protons in MPD

Reconstructed and generated v₂ of pions and protons have a good agreement for all methods

Au+Au vs. Bi+Bi collisions for MPD reconstructed data

Expected small difference between two colliding systems

Au+Au vs. Bi+Bi collisions for MPD reconstructed data

Expected small difference between two colliding systems

Outlook – v₁ study at NICA energies

Slope dv₁/dy has non-monotonic behavior and strong centrality dependence

Outlook – v₁ study at NICA energies

DCM-QGSM-SMM and JAM XPT have the better agreement with STAR published data

NA61/SHINE: O. Golosov, E. Kashirin (ICPPA 2020)

What kind of additional information can we extract from (p_{τ} , centrality)-dependence of v_1 from comparison with DCM-QGSM-SMM and JAM (XPT & 1PT EoS) models?

Summary and outlook

- v₂ at NICA energies shows strong energy dependence
- Comparison of methods for v₂ measurements from different models:
 - The differences between methods are well understood and could be attributed to non-flow and fluctuations
 - Relative flow fluctuations v₂{4}/v₂{2} measured in STAR can be reproduced by models with and without QGP, indicating main source of flow fluctuations is the participant eccentricity fluctuations
- Feasibility study for elliptic flow in MPD:
 - v₂ of identified charged hadrons: results from reconstructed and generated data are in a good agreement for all methods
 - v₂ measurements are robust upon non-uniform acceptance in MPD
 - Expected small difference between Bi+Bi and Au+Au colliding systems
- Outlook:
 - v₁, v₂, and v₃ measurements for the MPD reconstructed data from vHLLE+UrQMD model
- Github repository: https://github.com/FlowNICA/CumulantFlow

Back-up slides

Centrality dependence of v₂{methods}

Description of high-order Q-Cumulants

 Higher order Q-Cumulants v₂{m} (m=6,8):

(A. Bilandzic et al., Phys. Rev. C **89** (2014), 064904)

- number of terms in "standalone" analytical expressions increases quickly with order of correlators
- using recursive algorithms: calculate analytically higher-order correlators in terms of lower ones

Eccentricity: Bi+Bi vs. Au+Au

UrQMD model predicts small difference between ε_n of Au+Au and Bi+Bi