Status of the MPD experiment at NICA

Arkadiy Taranenko (NRNU MEPhI) for the MPD Collaboration

The Critical Point and Onset of Deconfinement Conference (CPOD 2021), March 15 - 19, 2021

NICA: Unique and complementary

• easily upgradeable

Anisotropic Flow at NICA energies

Anisotropic flow at NICA energies:

- Lack of existing differential measurements of v_n (p_T, centrality, PID, ...)
- Strong energy dependence of v_n at $\sqrt{s_{NN}}$ =3-11 GeV

Elliptic flow at NICA energies: Models vs Data comparison

Pure String/Hadronic Cascade models give smaller v₂ signal compared to STAR data for Au+Au $\sqrt{s_{NN}}$ =7.7 GeV and above and give similar v₂ signal compared to STAR data for Au+Au $\sqrt{s_{NN}}$ =4.5 GeV

NICA Accelerator Complex in Dubna

Multi-Purpose Detector (MPD) Collaboration

AANL, Yerevan, Armenia; Baku State University, NNRC, Azerbaijan; University of Plovdiv, Bulgaria; University Tecnica Federico Santa Maria, Valparaiso, Chile; Tsinghua University, Beijing, China; USTC, Hefei, China; Huzhou University, Huizhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China;

11 Countries, >500 participants, **39** Institutes and **JINR**

Deputy Spokespersons:

Victor Riabov, Zebo Tang

IHEP, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Palacky University, Olomouc, Czech Republic; NPI CAS, Rez, Czech Republic; Tbilisi State University, Tbilisi, Georgia; Joint Institute for Nuclear Research;

FCFM-BUAP (Mario Rodriguez) Puebla, Mexico; FC-UCOL (Maria Elena Tejeda), Colima, Mexico; FCFM-UAS (Isabel Dominguez), Culiacán, Mexico; ICN-UNAM (Alejandro Avala), Mexico City, Mexico; CINVESTAV (Luis Manuel Montaño), Mexico City, Mexico; Institute of Applied Physics, Chisinev, Moldova; WUT, Warsaw, Poland; NCNR, Otwock – Świerk, Poland; University of Wrocław, Poland; University of Silesia, Poland; University of Warsaw, Poland; Jan Kochanowski University, Kielce, Poland; Project Manager: Slava Golovatyuk Belgorod National Research University, Russia; INR RAS, Moscow, Russia; MEPhI, Moscow, Russia; Moscow Institute of Science and Technology, Russia; North Osetian State University, **Russia**; NRC Kurchatov Institute, ITEP, Russia; Kurchatov Institute, Moscow, Russia; St. Petersburg State University, Russia; SINP, Moscow, Russia; PNPI, Gatchina, Russia;

MPD Civil Construction status

• <u>MPD Hall ready for</u> limited scope of equipment installation, remaining works still ongoing

 Assembly of the magnet yoke – start with 13 modules (out of 28) installed with average 200 μm precision, full yoke done in Dec 2021

MPD Systems in production

Centrality determination in MPD : multiplicity of charged particles in TPC

Reconstructing the impact parameter by the MC Glauber approach (MC-GI) and by Bayesian inversion method (Γ-fit)

Centrality using energy of spectators in FHCal

Hadroproduction with MPD

- Particle spectra, yields & ratios are sensitive to bulk fireball properties and phase transformations in the medium
- Uniform acceptance and large phase coverage are crucial for precise mapping of the QCD phase diagram
 - ✓ 0-5% central Au+Au at 9 GeV from the PHSD event generator, which implements partonic phase and CSR effects
 ✓ Recent reconstruction chain, combined dE/dx+TOF particle ID, spectra analysis

- MPD provides large phase-space coverage for identified pions and kaons (> 70% of the full phasespace at 9 GeV)
- Hadron spectra can be measured from p_T=0.2 to 2.5 GeV/c
- Extrapolation to full p_T-range and to the full phase space can be performed exploiting the spectra shapes (see BW fits for p_T-spectra and Gaussian for rapidity distributions)

Strange and multi-strange baryons

Stage'1 (TPC+TOF): Au+Au @ 11 GeV, PHSD + MPDRoot reco.

Efficiency and p_{τ} spectrum

Full p_T spectrum and yield extraction, reasonable efficiency down to low p_T

Hypernuclei at MPD

astrophysical research indicates the appearance of hyperons in the dense core of a **neutron star** Stage 2: central Au+Au @ 5 AGeV; DCM-QGSM

hyper nucleus	yield in 10 weeks
³ _∧ He	9 · 10 ⁵
⁴ _∧ He	1 · 10 ⁵

Resonances at MPD

· Minbias Au+Au@11 (UrQMD) · Full reconstruction and realistic PID · Topology cuts and secondary vertex · Event mixing for background

NICA Efficiencies and closure tests examples

· Minbias Au+Au@11 (UrQMD) · Full reconstruction and realistic PID · Topology cuts and secondary vertex · Event mixing for background

Performance study of v_2 of pions and protons in MPD

Reconstructed and generated v₂ of pions and protons have a good agreement for all methods

Performance study of v_2 of K_s^0 and Λ in MPD

Reconstructed and generated v_2 of K_s^0 and Λ have a good agreement for all methods 20

Summary

- The NICA Accelerator Complex in construction with important milestones achieved and clear plans for 2021 and 2022
- All components of the MPD 1st stage detector advanced in production, commissioning expected for 2022
- Intensive preparations for the MPD Physics program with initial beams at NICA in 2023

Thank you for you attention

NICA Time Projection Chamber (TPC): main tracker

length	340 см
outer Radii	140 см
inner Radii	27 см
gas	90%Ar+10%CH ₄
drift velocity	5.45 см / µs;
drift time	< 30 µs;
# R-O chamb.	12 + 12
# pads/ chan.	95 232
max rate	$< 7kGz (L= 10^{27})$

 mm^2

21 (out of 24+2) Read-Out Chambers (ROCs) are ready and tested (production at JINR)

113 Electronics sets (8%) producedTwo sites (Moscow, Minsk) tested forelectronics productionC1-C2 and C3-C4 cylinders assembledTPC flange under finalization

23

MPD Time-of-Flight

Mass production staff: 4 physicists, 4 technicians, 2 electronics engineers Productivity: ~ 1 detector per day (1 module/2 weeks)

Glass cleaning with ultrasonic wave & deionized water

MRPC assembling

Automatic painting of the conductive layer on the glass

Soldering HV connector and readout pins

	Number of detectors	Number of readout strips	Sensitiv e area, m ²	Number of FEE cards	Number of FEE channels
MRPC	1	24	0.192	2	48
Module	10	240	1.848	20	480
Barrel	280	6720	51.8	560	13440 (1680 chips)

All procedure of detector assembling and optical control is performed in a clean rooms ISO class 6-7.

Single detector time resolution: 50ps

Purchasing of all detector materials completed So far 40% of all MRPCs are assembled Assembled half sectors of TOF are under Cosmics tests Investigation of solutions for detector integration and technical installations

Electromagnetic Calorimeter (ECAL)

Pb+Sc "Shashlyk" re
 Segmentation (4x4 cm²) σ

read-out: WLS fibers + MAPD $\sigma(E)$ better than 5% @ 1 GeV

 $L \sim 35 \text{ cm} (\sim 14 X_0)$ time resolution ~500 ps

Barrel ECAL = <u>38400</u> ECAL towers (2x25 half-sectors x 6x8 modules/half-sector x 16 towers/module)

So far ~300 modules (16 towers each) = 3 sectors are produced Another 3 sectors are planned to be completed by May 2021 Chinese collaborators will produce 8 sectors by the end of 2021 25% of all modules are produced by JINR (production area in Protvino) 75% produced in China, currently funding is secured for

Projective geometry

VICA Forward Hadron Calorimeter (FHCal)

- Two-arms at ~3.2 m from the interaction point.
- Each arm consists of 44 individual modules.
- Module size 150x150x1100cm³ (42 layers)

7 MAPDs/module ٠

FFD - Fast Trigger L₀ for MPD

FFD provides information on

- interaction rate (luminosity adjustment)

- bunch crossing region position

Fig. 4-1. A scheme of the FFD module.

15 mm quartz radiator 10 mm Lead converter

The FFD sub-detector consists of 20 modules based on Planacon multianode MCP-PMTs 80 independent channels

> MPD trigger group is created on the basis of FFD team Beside FFD we consider the signals from FHCal to be implemented into trigger L0 The FHCal team have produced trigger electronics. Monte Carlo studies will be used to optimize the properties of the L0 trigger

MPD Electronics Platform

The design of the MPD Electronics Platform is a major contribution of the Polish groups to MPD M. Peryt (WUT) – leader of the "Engineering Support" Sector of VBLHEP

- Electronics platform has 4 levels with 8 racks on each level
- Each Rack provides cooling, fire safety and radiation control system
- Cable ducts connect detectors inside of MPD and Electronics Platform
- The mechanical part of the Platform is ready

MPD Cosmic Ray Detector (MCORD)

NCBJ, Świerk - WUT, Warsaw – UJK, Kielce (Poland) 18 scientists+12 engineers Project leader: M. Bielewicz (NCBJ)

As soon as possible - start tests of MPD subsystems before Collider operation Cosmic Ray Detector required for Commissioning and tests of the MPD. The signals from MCORD will be used for TPC and TOF tests after their installation. We'll need the elements of MCORD (scintillation panels with readout electronics) in March 2021 CDR for MCORD under evaluation of the MPD DAC

Cosmic Ray Detector consists of plastic scintillators with SiPM (Phototubes) light converters

- Trigger (for testing or calibration) a) - testing before completion of MPD (testing of TOF, ECAL modules and TPC) - calibration before experimental session
- Veto (normal mode b) track and time window recognition) Mainly for TPC and eCAL

Additionally

c)

730

5. MCORD Detector

SCINTILLATORS

itionally Astrophysics (muon shower and bundles) - unique for horizontal events Vorking in cooperation with TPC - unique for horizontal events - unique for horizontal events Number of detector in one module: 18 Number of Modules: 28 Dimensions of module: 730x90x4700 [mm] Weight of one module: 150 kg SiPM/MMPC Number of SiPMs (Chanels) 1320 Number of SiPMs (with two fibers) 2640 RESOLUTION Position resolution: In X axis – up to 5 cm, In Y axis – 5-10 cm Time Resolution – about 300-500 ps Number of events (particles): about 100-150 per sec per m2 Calculated Coincidence factor: about 98%	- calibration before experimental session Veto (normal mode - track and time window recognition) Mainly for TPC and eCAL	Number of scintillators: Dimensions of scintillators: Dimensions of detector: Scintillators are placed in the rectangle pro	660 pcs 95x25x1500 [mm] 100x30x1554 [mm ofile 10x30x2.5 [mm]
Astrophysics (muon shower and bundles) - unique for horizontal events Vorking in cooperation with TPC	ditionally	Weight of detector:	6.5 kg
Number of detector in one module: 18 Number of Modules: 28 Dimensions of module: 730x90x4700 [mm] Weight of one module: 150 kg SiPM/MMPC Number of SiPMs (Chanels) 1320 Number of SiPMs (with two fibers) 2640 RESOLUTION Position resolution: In X axis – up to 5 cm, In Y axis – 5-10 cm Time Resolution – about 300-500 ps Number of events (particles): about 100-150 per sec per m2 Calculated Coincidence factor: about 98%	Astrophysics (muon shower and bundles) - unique for horizontal events	Modules	Aluminum alloy
19 28 Dimensions of modules: 730x90x4700 [mm] Weight of one module: 150 kg SiPM/MMPC Number of SiPMs (Chanels) 1320 Number of SiPMs (with two fibers) 2640 RESOLUTION Position resolution: In X axis – up to 5 cm, In Y axis – 5-10 cm Time Resolution – about 300-500 ps Number of events (particles): About 100-150 per sec per m2 Calculated Coincidence factor: about 98%	Working in cooperation with TPC	Number of detector in one module:	18
19 Dimensions of module: 730x90x4700 [mm] Weight of one module: 150 kg SiPM/MMPC Number of SiPMs (Chanels) 1320 Number of SiPMs (with two fibers) 2640 RESOLUTION Position resolution: In X axis – up to 5 cm, In Y axis – 5-10 cm Time Resolution – about 300-500 ps Number of events (particles): Number of events (particles): about 100-150 per sec per m2 Calculated Coincidence factor: about 98%	4/00 >	Number of Modules:	28
Weight of one module: 150 kg SiPM/MMPC Number of SiPMs (Chanels) 1320 Number of SiPMs (with two fibers) 2640 RESOLUTION Position resolution: In X axis – up to 5 cm, In Y axis – 5-10 cm Time Resolution – about 300-500 ps Number of events (particles): Number of events (particles): about 100-150 per sec per m2 Calculated Coincidence factor: about 98%		Dimensions of module:	730x90x4700 [mm]
SiPM/MMPC Number of SiPMs (Chanels) 1320 Number of SiPMs (with two fibers) 2640 RESOLUTION Position resolution: In X axis – up to 5 cm, In Y axis – 5-10 cm Time Resolution – about 300-500 ps Number of events (particles): Number of events (particles): about 100-150 per sec per m2 Calculated Coincidence factor: about 98%		Weight of one module:	150 kg
18 detectors = 1 module Number of SiPMs (Chanels) 1320 18 detectors = 1 module Number of SiPMs (with two fibers) 2640 RESOLUTION Position resolution: In X axis – up to 5 cm, In Y axis – 5-10 cm Time Resolution – about 300-500 ps Number of events (particles): Number of events (particles): about 100-150 per sec per m2 Calculated Coincidence factor: about 98%		SIPM/MMPC	-
18 detectors = 1 module mass about 150kgNumber of SiPMs (with two fibers)26402640RESOLUTIONPosition resolution:In X axis – up to 5 cm, In Y axis – 5-10 cmTime Resolution – about 300-500 psNumber of events (particles):about 100-150 per sec per m2Calculated Coincidence factor:about 98%		Number of SiPMs (Chanels) 13	320
18 detectors = 1 module mass about 150kg RESOLUTION Position resolution: In X axis – up to 5 cm, In Y axis – 5-10 cm Time Resolution – about 300-500 ps Number of events (particles): about 100-150 per sec per m2 Calculated Coincidence factor: about 98%		Number of SiPMs (with two fibers) 26	540
18 detectors = 1 module mass about 150kgPosition resolution: In X axis – up to 5 cm, In Y axis – 5-10 cm Time Resolution – about 300-500 ps Number of events (particles): about 100-150 per sec per m2 Calculated Coincidence factor: about 98%		RESOLUTION	
	18 detectors = 1 module mass about 150kg	Position resolution: In X axis – up to 5 cm, Time Resolution – about 300-500 ps Number of events (particles): about 7 Calculated Coincidence factor: about 9	, In Y axis – 5-10 cm 100-150 per sec per m2 98%

NICA Inner Tracker System (ITS): precise tracking

Consortium includes JINR, NICA (BM@N & MPD), FAIR, Russian, Polish and Ukrainian Institutes + CCNU Central China Normal Univ., IMP- Institute of Modern Physics, USTC – Hefei

Protocol # 134 between CERN and JINR states the legal terms for transaction of CERN developed novel technology and the knowhow for building the MPD-ITS on the basis of Monolithic Active Pixel Sensors (*the MAPS*) ALPIDE, signed in 2018. This document laid a clear road towards the MPD ITS.

MPD ITS based on ALICE type staves

NICA Milestones of MPD assembling in 2020-2022

Year 2020

1.	July 15 th	 MPD Hall and pit are ready to store and unpack Yoke parts
2.	August	- The first 13 plates of Magnet Yoke are assembled for alignment checks
3.	Sept 15 - Oct 1st	- Solenoid is ready for transportation from ASG (Italy)
4.	November 6 th	- Solenoid arrived in Dubna
5.	Nov-Dec -	Assembling of Magnet Yoke at JINR
		Year 2021
6.	Jan- Sep	- Preparation for switching on the Solenoid (Cryogenics, Power Supply et cet.)
7.	Oct - Nov	- Magnetic Field measurement
8.	Dec	- Installation of Support Frame
		Year 2022
9.	Jan- Jun	 Installation of TOF, TPC, Electronics Platform, Cabling
10.	Jul - I	Installation of beam pipe, FHCal, Cosmic Ray test system
11.	Jul-Dec	- Cosmic Ray tests

12. December - Commissioning

•

Year 2023 - Run on the beam

13. March

NICA System size sensitive to phase transition

- Femtoscopy based on two-particle correlation technique (similar to HBT effect in astronomy) probes system size in HIC
- Measurement for pions straightforward and robust, large discovery potential in correlations for kaons and protons, as well as correlations including hyperons

- Clear sensitivity of pion source size to the nature of the phase transitions
- Important and sensitive cross-check of detector performance (two-track resolution)

$(NICA) \pi^0$ and η Reconstruction via conversion

- Photon reconstruction, complimentary to ECAL
- Direct photons, neutral mesons, geometry scan etc ...
- Minbias AuAu@11, UrQMD conversion on the beam pipe and inner layers of the TPC

Setup, event and track selection

Performance study for v_2 of V0 particles

Reasonable agreement between reconstructed and generated v_2 signals for both K⁰ and A

Event plane method using v_1 of particles in FHCal

Using v_1 of particles in FHCal to determine Q_n

$$Q_{1} = \frac{\sum E_{i} e^{i\varphi_{i}}}{\sum E_{i}}, \Psi_{1,\text{FHCal}} = \tan^{-1}\left(\frac{Q_{1,y}}{Q_{1,x}}\right) \quad (1)$$

E – energy deposition in FHCal modules (2< $|\eta|$ <5)

$$R_n\{\Psi_{1,\text{FHCal}}\} = \langle \cos[n(\Psi_{\text{RP}} - \Psi_{1,\text{FHCal}})] \rangle \quad (2)$$

$$v_2\{\Psi_{1,\text{FHCal}}\} = \frac{\langle \cos[n(\varphi - \Psi_{1,\text{FHCal}})]\rangle}{R_n\{\Psi_{1,\text{FHCal}}\}}$$
(3)

Energy distribution in FHCal