



## **Status of the BM@N experiment**

## **M.Kapishin**



M.Kapishin

# Baryonic Matter at Nuclotron (BM@N) Collaboration:

# 10 Countries, 19 Institutions, 255 participants

- University of Plovdiv, Bulgaria → MoU signed;
- St.Petersburg University;
- Shanghai Institute of Nuclear and Applied Physics, CFS, China;
- Tsinghua University, Beijing, China → leave BM@N;
- Nuclear Physics Institute CAS, Czech Republic→ MoU signed;
- CEA, Saclay, France;
- TU Darmstadt, Germany;
- GSI & FAIR, Germany → joined BM@N;
- Tubingen University, Germany → MoU signed;
- Tel Aviv University, Israel;
- Joint Institute for Nuclear Research;
- Institute of Applied Physics, Chisinev, Moldova → leave BM@N, join JINR group;
- Warsaw University of Technology, Poland
   → MoU just signed;
   BM@N Experiment





- University of Wroclaw, Poland → MoU signed;
- Institute of Nuclear Research RAS, Moscow, Russia → MoU signed;
- NRC Kurchatov Institute, Moscow;
- Institute of Theoretical & Experimental Physics, NRC KI, Moscow, Russia;
- Moscow Engineer and Physics Institute, Russia;
- Skobeltsin Institute of Nuclear Physics, MSU, Russia → MoU signed;
- Moscow Institute of Physics and Technics, Moscow, Russia → MoU signed;
- Massachusetts Institute of Technology, Cambridge, USA.



## **BM@N: study Short Range Nucleon Correlations with hard inverse kinematic reactions** <sup>12</sup>C Beam Frame Lab frame





First observation of SRCs with bound residual A-2 system in reactions:

$${}^{2}C + p \rightarrow 2p + {}^{10}B / {}^{10}Be + (n / p)$$

2 <sup>10</sup>Be events  $\rightarrow np$  pair dominance

BM@N SRC paper:

"The Transparent Nucleus: unperturbed inverse kinematics nucleon knockout measurements with a 48 GeV/c carbon beam"

accepted for publication in Nature Physics

#### A hyperon signals in 3.2A GeV Argon-BM@N nucleus interactions P.Batyuk



PATH = 12 cmDCA12 = 0.7 cm2000 DCA2 = 2.2 cmDCA1 = 0.3 cmDCA0 = 1.2 cm1500 1000 Mass = 1.1153500 Sigma = 0.0033 Numb. of  $\Lambda^0 = 2500$ , (2481) S / B = 0.162, (0.174) n  $M_{(p + \pi^{-})}, GeV/c^{2}$ 1.15 1.1

Invariant mass:  $\Lambda^0 \rightarrow \pi^- + p$  (Al Cu Pb Sn)

Ar+Cu interaction reconstructed in central tracker

Ar (3.2 AGeV) + Target  $\rightarrow \Lambda$  + X  $\Lambda$  signal width 3.3 MeV

#### Aim:

Yields of  $\Lambda$  hyperons in *argon - nucleus* interactions



# Status of TOF-700 particle identification









**M.Kapishin** 



For heavy ion beam intensities of few  $10^6$  Hz  $\rightarrow$  keep 4 STS + 7 GEM  $\rightarrow$  fast FEE and readout electronics



M.Kapishin

# EOS of symmetric and asymmetric nuclear matter

**BM@N** experiment



from talks of Peter Senger

- Study symmetric matter EOS at  $\rho$ =3-5  $\rho_0$   $\rightarrow$  elliptic flow of protons, mesons and hyperons
- $\rightarrow$  sub-threshold production of strange mesons and hyperons
- $\rightarrow$  extract incompressibility factor K from data to model predictions
- Constrain symmetry energy E<sub>sym</sub>
   → elliptic flow of neutrons vs protons
   → sub-threshold production of particles
   with opposite isospin

## 1<sup>st</sup> stage of hybrid central tracker: 3 Forward Si + GEM (Fall 2021 configuration)



► A task force group was formed to perform event simulation and reconstruction in New configuration

#### M.Kapishin

DCM-QGSM model Kr + Pb , T<sub>0</sub>= 2.4 AGeV



New vs Old (2018) configuration  $\epsilon$ (track) increased by 2 Or  $\epsilon(\Lambda)$  increased by 3.5 wi

# Only upper part equipped with detectors

#### **BM@N** experiment

A.Zinchenko, V.Vasendina 3 Forward Si + 7 GEM, New configuration 2021

BM@N



Old configuration, March 2018





## QGSM model, Au+Au, $T_0 = 4 AGeV$





Hybrid STS + GEM tracker relative to STS alone:

► 4 times increase in number of reconstructed ∧ hyperons

#### **M.Kapishin**

## Centrality and EP with FHCAL, Scint Wall and FQH

BM@N



M.Kapishin

BM@N experiment

## **Forward Si tracking detectors**





Group of N.Zamiatin



Half-plane design

ASICs VATAGP7.1 (IDEAS, Norway)

Proven technology and FEE readout electronics → used in C, Ar, Kr runs
Development, production, tests and installation according to time schedule → by autumn 2021

Design of the Si-planes on the BM@N beam-channel

# **Development of STS tracking system**



## **4 STS stations**



STS-box

JINR, MSU, GSI, WUT groups

**Current activities:** 

- Module & ladder assembly Delay of component delivery from GSI
- Mainframe development
- STS-XYTER ASIC certification
- FEB v2.1 development
- Readout electronics development GBT x EMU board FEB to GBTxEMU connectors



GBTxEMU

# Beam, Si tracking detectors and target station BM@N



M.Kapishin

# Status of BM@N upgrade and possible risks



Forward Si tracking detectors: ► Proven technology and FEE readout electronics → used in C, Ar, Kr runs

**Development**, production, tests and installation  $\rightarrow$  autumn 2021

Beam, Si tracking detectors and target station:

All detectors and target station to be ready in autumn 2021

#### **GEM tracking detectors:**

► All detectors produced at CERN, → tested in C, Ar, Kr runs

► No proven fast FEE for high intensity run

**Trigger and T0 detectors:** 

Detector performance in heavy ion beam should be tested in first run

### Large aperture STS tracker:

Complicated module, readout cables

and ladder assembly

 $\rightarrow$  probable delay and long commissioning phase

**CSC** chambers for Outer tracker:

 4 chambers to be ready by middle 2021
 Risk of delay in production of 2 big CSC chambers

Time of Flight identification system:

Detectors and readout electronics are in operation since 2018

Carbon fibre beam pipe inside BM@N:

Vacuum beam pipe should be produced and tested by autumn 2021 Beam pipe in front of target:

Beam pipe elements and detector boxes are delivered to BM@N

**New FHCAL hadron calorimeter:** 

► FHCAL installed into BM@N setup, FQH hodoscope and Scint Wall in construction

M.Kapishin

## Plans for 2021 – 22 experimental runs



Uncertainties for launching of heavy ion physics program:

- Vacuum transport channel from Nuclotron to BM@N is critical for operation with middle and heavy ion beams
- Accelerator team need time to put Booster Nuclotron system into routine operation

Plan to start with a new SRC run in December 2021 with carbon beam provided by Booster-Nuclotron or Nuclotron alone

risks: performance of new detectors, travel restrictions, logistics

critical is a new detector to separate protons from pions in the proton arms to improve data quality

**SRC** configuration is not consistent with the BMN setup for heavy ions

► To switch from SRC to BM@N heavy ion program need two months to install and align vacuum carbon beam pipe and target, beam Si tracker, Forward Si, GEM, CSC, FHCAL, trigger detectors

► We consider to start BM@N heavy ion program with a middle weight ion beams (Kr, Xe) in Spring 2022

operate 1<sup>st</sup> stage of hybrid central tracker (3 Fwd Si + 7 GEM)

M.Kapishin



# SRC setup vs BM@N heavy ion setup



SRC configuration is not consistent with the BMN setup for heavy ions:
 delicate beam pipe within BM@N magnet, Si, GEM central tracker are obstacles for SRC nuclear fragments,

 $\rightarrow$  In future BMN central detectors / beam pipe will be removed / re-installed only in case major repair / upgrade

 vacuum beam pipe from quadruple should be dismounted to install SRC H2 target, beam and fragment detectors

 $\rightarrow$  need a couple of months between SRC and heavy ion run to reconfigure and align BM@N detectors

DCH chambers are used for SRC, but are not suitable for heavy ions



**M.Kapishin** 

## Beam parameters and setup at different BM@N stages of the BM@N experiment

| Year                         | 2016                    | 2017<br>spring          | 2018<br>spring                                   | 2022<br>spring                                   | 2023                                                              | After 2023                                      |
|------------------------------|-------------------------|-------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|
| Beam                         | d(↑)                    | С                       | Ar,Kr,<br>C(SRC)                                 | Kr,Xe                                            | Au (Bi)                                                           | Au (Bi)                                         |
| Max.inten<br>sity, Hz        | 0.5M                    | 0.5M                    | 0.5M                                             | 0.5M                                             | 0.5M                                                              | 2M                                              |
| Trigger<br>rate, Hz          | 5k                      | 5k                      | 10k                                              | 10k                                              | 10k                                                               | up to 50k                                       |
| Central<br>tracker<br>status | 6 GEM<br>half<br>planes | 6 GEM<br>half<br>planes | 6 GEM half<br>planes +<br>3 forward Si<br>planes | 7 GEM full<br>planes + 3<br>forward Si<br>planes | 7 GEM full<br>planes + 4<br>forward Si<br>+ 2 large<br>STS planes | 7 GEM full<br>planes +<br>4 large<br>STS planes |
| Experimen<br>tal status      | technical<br>run        | technical<br>run        | technical<br>run+physics                         | stage 1<br>physics                               | stage1<br>physics                                                 | High rate<br>stage 2<br>physics                 |

#### 4. Estimated uncertainties and risks in the Project

We consider the following uncertainties and risks in the project realization:

- Due to a possible delay with the construction of the full vacuum transport channel from the Nuclotron to BM@N the start of heavy ion beam runs could be postponed. Interactions of the heavy ion beam in the air and beam channel elements could cause unacceptable halo background and a wider spread of the beam for the efficient detector operation. The installation of a collimator would reduce the level of background originated from the transport channel.
- Uncertainty in putting into stable routine operation of the Booster-Nuclotron accelerator complex could cause delay of the start of the heavy ion program
- Putting the NICA collider into operation could limit the capacity of the accelerator division to perform experimental runs at the Booster-Nuclotron complex. As a result the accelerator time requested to fulfill the project goals could be achieved later in time.
- Probable delay and long commissioning phase of the installation and putting into operation of the large aperture silicon tracking system STS. As a result, the high intensity heavy ion beam runs with the final BM@N configuration could be delayed.
- A fast FEE electronics for GEM and CSC readout in the high intensity heavy ion beam runs could be not available due to the delivery restrictions. As a result, BM@N will be operated at the beam intensity of few 10<sup>5</sup> Hz.
- Probable delay in the construction of two big CSC chambers of the outer tracking system. The existing DCH drift chambers could be used instead for the middle weight ion beams.
- The response of the beam silicon and trigger detectors could deteriorate due to high ion fluxes. Spare exemplars of the detectors are foreseen for replacement.

# Thank you for attention!

**M.Kapishin** 

# Simulation of hybrid central tracker for heavy ion runs: $\Xi^{-}$ and ${}_{\Lambda}H^{3}$ reconstruction





BM@N

**M.Kapishin** 

**BM@N** experiment

3

# **Event plane resolution**



#### ZDC 36 modules 15x15 cm<sup>2</sup> ZDC 144 modules 7,5x7,5 cm<sup>2</sup>





## **Trigger and T0 detectors for heavy ions**

**FFD** 



Box for BC2 counter Box for BC1, Veto



BD





should be tested in first run



Trigger group

BD • FFD
 FFD
 FFD
 T0 and beam scintillator film counters for heavy ion beam intensities < 10<sup>6</sup> Hz
 FFD T0 detectors and Si beam detectors for higher intensities
 Detector performance and efficiency in heavy ion beam

Fast quartz FFD detectors for high intensity heavy ions

#### M.Kapishin

## **CSC** chambers for Outer tracker in heavy ion runs

# BM@N

## A.Vishnevsky and team, LHEP JINR

- Four 106x106 cm<sup>2</sup> CSC chambers to be installed in front and behind ToF-400 should be ready by end of 2020
- Two 219x145 cm<sup>2</sup> CSC chambers to be installed in front and behind ToF-700 should be produced in 2021

## **Risk of delay in production of big CSC chambers**

### First 106x106 cm<sup>2</sup> CSC chamber in BM@N Ar run







electronics cathode strips



#### **M.Kapishin**

## Beam pipe in front of the target





Design and production of beam pipe by Belgorod University
Beam pipe elements and detector boxes are delivered to Dubna

**M.Kapishin** 

# New FHCAL (ZDC) hadron calorimeter

Team of INR RAS, Troitsk

#### **CBM modules MPD modules**

FHCAL assembled and installed into BM@N setup
Cosmic tests are under way



Measure  $E_{dep}$  v Asymmetry of  $E_{dep}$  and  $\Sigma Z^2$  with quartz hodoscope in the beam hole to resolve central and peripheral interactions

BM@N



# BM@N beam profile





**M.Kapishin** 

BM@N experiment