

SILICON TRACKING SYSTEM FOR THE BM@N

Yuri Murin for the CBM-BM@N STS team

"7th BM@N Collaboration meeting", 19-20 April 2021, VB LHEP, JINR, Dubna

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072

Outline

□ Historical Background

- Major Achievements
- Current Status
- Planning and timeline of delivery
- Existing risks and ways of mitigating

Concluding remarks

Historical Background

2006-2008 ITSC grant – CBM-ITS Consortium (CBM grant support)

for GSI money and

components)

start of R@D on basic

death" of the

assembly of modules,

split of activities

BM@N: JINR and BMBF

grants)

related to CBM and

support, RFBR and EC

Optional: (Continuation of R@D," 2022 - STS v.2.0 2023-STS v.4.0 consortium on R@D. 2023-24 - ITS-OB preparations for serial

Milestones of the Project

- Start at 2006 followed by sustainable growth with support of CBM
- □ 2008: Organization of the CBM-MPD STS Consortium for joint R@D on components
- 2014: Recognition by JINR management after getting direct financial contribution of GSI in LHEP infrastructure and building the first clean room at LHEP
- 2014: Organization of the STS Department at LHEP
- □ 2018: Protocol on MAPS ITS technology know-how transfer with CERN as the basis for the MPD-ITS project

2019: "Split" with the CBM STS and start a work on the BM@N version of FEBs, modules, ladders, etc. and their connectivity

2021: Getting financial support from EC through CREMLINplus grant agreement for hiring new personal and activation of the in-kind contribution of BMBF to NICA @21,5 M EUR, getting close to production readiness

BM@N Forward Si

Close to completion

BM@N-STS

Production to start this year

MPD-ITS

In initial stage

BM@N STS Stations

Assembly of modules

A.Shereremtiev, N. Sukhov, T.Andreeva, T.Semchukova, M.Shitenkow

1/2

Ultrasonic assembly process on TAB-bonding machine

TAB - Bonding result of 1-st row of contacts

of contacts

Encapsulation of 1-st row

TAB - Bonding result of 2nd row of contacts

7th BM@N collaboration meeting

Assembly of modules

A.Shereremtiev, N. Sukhov, T.Andreeva, T.Semchukova, M.Shitenkow

2/2

AFCK board v.1.1 and FMC board

Winway socket PogoPin device (GSI)

GUI of Test Program by A. Kolozhvari (JINR)

Bonding QA tests of 1st row on sensor

Ladder Assembly Device

custom-designed and manufactured by PLANAR ltd, Minsk

LAD consists of:

- optical system, which is used for the monitoring of the sensor position in a horizontal plane and has an accuracy of 2μm.
- different sets of sensor positioning tables with microscrews
- lift unit for the vertical displacement of the ladder sensor supporting CF truss.
- Device is installed on the heavy diabase table to avoid vibrations of the LAD during operation.

LAD should provide the following accuracy of the sensor positioning:

X coordinate: $\pm 15 \ \mu m$ on 1200 mm along the truss; Y, Z coordinates: $\pm 50 \ \mu m$ across the truss;

Ladder assembly team:

V. Elsha, N.Sukhov, M.Korolev (MSU)

BM@

STS Mainframe to favour repearability

Tentative design and feasibility demonstrations of key properties are carried out by MSU group, M.Merkin with approach different from the CBM STS

Master-Jig for the assembly of CF Mainframe

Basic elements: Estimation of Readiness for Production

292 x Modules 90% i. 3-d generation of jigs and fixtures ii. Expansion of clean area

34 x Ladders 70% *i. Demonstration of productivity ii. Optimization of jigs*

STS mainframe with in-build liquid and gas cooling systems 25% i.Demonstration of positioning accuracy and stability of the system with cooling system builtined

Electronics for fast data readout to the nodes of the on-line farm 25% i. Finalization of firm ware development ii. Demonstration of functionality at laser testbench, with cosmic rays, and during in-beam tests

BM@

Service equipment: freon and dry air cooling plants 0% i. Procurement of equipment ii. Demonstration of functionality lii. DCS with WinCC OA SCADA

To Do List for 2021-2022

12

Reached or almost reached:

- The TDR on STS (completed)
- Finalization of R@D on modules and supermodels (the ladder) (to be completed within a quarter)
- Technology for module assembly including step-by- step QA control (to be completed within a quarter with final generations of fixture sets)

Still in reach:

- Finalization of the readout chain development and demonstration its feasibility to the requirements of BM@N DAQ system
- Mainframe mechanics (coolling sinks and gas nodes to be inbuilt, stability of with full cable connectivity demonstrated)
- Power supply and cooling system basic equipment acquired and installed
- DCS with WinCC OA SCADA implemented both for power supply and cooling plants

http://www1.jinr.ru/Books/The%20Silicon%20Tracking%20v System_sajt.pdf

Planning and time delivery

Laser (ourselves) and cosmic rays(together with BM@N-GEM)

Telescope of 3 modules plus reference detectors for demonstration of integration to the triggered small system

Two-three ladders for noise and cross talk optimization

Quarter of a station test with final cooling systems implemented

Two plane system for final adjustments

Bench tests

Run #1 with light ions

Run # 2 with light ions

Run #3 with light ions

Run # 4 with heavy ions *)

*) optional

Risks and ways for their mitigating

Improvement of delivery coordination and efficiency of procurement procedures

GSI budgeted by GSI delayed

Improvement of coordination with technical groups of BM@N

Hiring of personal with CREMLINplus financial support

Sudden technical problems with integration with BM@N

Lack of software engineers

Conclusions and thanks

- > 18x Ladders;
- > **100**x Silicon strip modules.

- 4x Stations;
- 34x Ladders;
- > **292**x Silicon strip modules.

2023-2024

2022

BM@