

Forward Silicon Tracker and beam detectors upgrade status

Bogdan Topko behalf on Forward Silicon Tracker team

7th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 19 April 2021

Contents

- Forward Silicon Tracker and beam detectors
- Beam profilometer
- Beam tracker
- Multiplicity trigger
- Front-end electronics test bench configuration
- FST Si modules test bench configuration
- Storing and analyzing measurement data solution
- FEE testing results
- Si modules testing results
- Summary

Forward Silicon Tracker and beam detectors

- detector: DSSD, 32×32 strips, pitch p+ / n+ strips 1.8 mm, thickness 175 μm, active area 60 × 60 mm²;
- **mechanical design:** The mechanical construction supports automatic removal of profilometer planes from beam zone to special branch pipe after beam tuning;
- FEE: for light ions based on VA163 + TA32cg2 (32 ch, dynamic range: -750fC ÷ +750fC);
- current status: two vacuum stations with flanges and cable connectors are ready, Silicon Detectors assembled on PCBs and tested with alpha-source (5.5 MeV), (FEE+ADC+DAQ) design in progress within schedule.

BM@N Beam tracker

Beam tracker FEE board Beam tracker Cross-board

- detector: DSSD, 128×128 strips, pitch p+ / n+ strips
 0.47 mm, thickness 175 μm, active area 61×61 mm²;
- FEE: based on VATA64HDR16.2 (64 ch, dynamic range: -20 pC ÷ +50 pC);
- current status: three vacuum stations with flanges and cable connectors are ready, Silicon Detectors assembled on PCBs and tested with alpha-source (5.5 MeV).
 Cross-board and FEE PCB are under test (left picture).
 Mechanical support and FEE cooling in progress within schedule.

Beam profilometer autonomous DAQ

7th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 19 April 2021

Beam tracker FEE first test result

7th Collaboration Meeting of the BM@N Experiment at the

NICA Facility, 19 April 2021

Multiplicity trigger

- detector: Silicon single-sided Detector, 525 μm thickness, 8 strips located at an angle with an interval of 5.63° and is an isosceles trapezoid in shape (45°) and active area 30.8 cm² (5 times bigger than previous Simultiplicity trigger 2018).
- mechanical design : new design is based on 2 symmetric half-planes (inner diameter Ø52 mm), which simplify multiplicity trigger assembling process around installed beam pipe. Multiplicity trigger is located at 62 mm downstream the target.
- **FEE:** based on 32 channel IC-AST-1-1 (Minsk) with adjustable threshold.
- **current status:** two half-planes assembled and tested with previous FEE (2018). New FEE design with new gain parameters is under discussion (due to strip capacitance 5 times increase).

Front-end electronics test bench configuration

Testing scenario:

6.

7.

- 1. Connect PCB to stand (HV, LV and temperature will be measured whole time) in cooling and EM shielding box;
- 2. Make pedestal run for each chip without HV at pitch-adapter, save raw data;
- 3. Send configuration data to each chip;
- 4. Measure crosstalk between neighbor channels (external test signal);
- 5. Measure I(PA)= $f(U_{HV})$ leakage current of PA-640n+ (only for n+ PCB);
 - Measure ENC= $f(U_{HV})$ (only for n+ PCB); Save data to the database.

Front-end electronics test bench configuration

FST Si modules test bench configuration

Testing scenario:

- Connect FST Si module to stand (HV, LV and temperature will be measured whole time) inside EM + light shielding test box;
- 2. Send configuration data to all ASICs;
- Make pedestal run for both module sides (ADC has 5 channels => only 1 side can be measured per run) with different HV values: 0, 25, 50 and 75 V.
 Make run with radioactive source ²²⁶Ra at different position and HV values.
 Save measured data to the database.
 Data analysis: a) Idark= f(U_{HV}); b) ENC = f(U_{HV}); c) amplitude of cluster distribution; d) cluster sizes distribution; e) occupancy distribution.

FST Si modules test bench configuration

BM@N

7th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 19 April 2021

1.

2.

3.

4.

Storing and analyzing measurement data solution

Storing and analyzing measurement data solution Web interface

1. Interactive tables for FEE test measurements

226Ra cente det1 75HV

26092 26338 24650

25190

26463

26520

25320

26474

26245

Previous 1 Next

Board ID = 32_0

Board ID = 24_1

black side Board ID = 32_0

red side Roard ID = 24_1

2.

2682

26642

26776

26638

2547

Cluster size distribution

upancy distribution in FSD Si module channels,

Module ID = 6 0 226Ra center det2 75HV

Module ID = 6_0 226Ra center det2 75H

- Interactive tables 2. for FST Si modules measurements
- 3. Interactive plots with FEE test results (chosen in table cell)
- 4. Interactive plots with FST Si modules test results (chosen in table cell)

JINR Grant for young scientists № 21-102-10

7th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 19 April 2021

BM@N FEE test results

For example FEE PCB of Si module (ID 6_0)

Signal distributions in ASIC channels for p+ side PCB (left) and n+ side PCB (right) after pedestal subtraction (wo CMS subtraction, Test signal 5 fC in 55th ch). Read-out frequency 3.6 MHz, T = 17 °C.

Board ID	Board type	<enc<sub>ASIC#1> ē RMS</enc<sub>	<enc<sub>ASIC#2> ē RMS</enc<sub>	<enc<sub>ASIC#3> ē RMS</enc<sub>	<enc<sub>ASIC#4> ē RMS</enc<sub>	<enc<sub>ASIC#5> ē RMS</enc<sub>	<enc<sub>PCB> ē RMS</enc<sub>	<snr> with internal signal</snr>	Bad channels ratio, %
32_0	black	1023.40	945.45	955.44	926.33	942.46	958.62	30.8279	0.31
24_1	red	1125.96	1069.42	1105.30	1042.33	1190.33	1106.67	65.3742	0.31

7th Collaboration Meeting of the BM@N Experiment at

the NICA Facility, 19 April 2021

FEE test results current status

38 from 84 PCBs were tested (13.04.2021)

Note: channel marked as bad if it has $ENC_{Ch} > (3* < ENC_{PCB} >) \text{ OR } ENC_{Ch} < (< ENC_{PCB} >/3)$ (i.e. it does NOT dead channel!)

Summary parameters of tested PCBs bad channels ratio (left), <ENC_{PCB}> (center) and <SNR_{PCB}> (right)

FST Si module test results

For example FEE PCB for Si module (ID 6_0): p+ side PCB (Board ID: 32_0); n+ side PCB (Board ID 24_1) Pedestal run at 75 V HV and read-out frequency 3.6 MHz (numeration starts from 0th channel)

> ENC per Si module channels <ENCp+> = 1964 ē RMS <ENCn+> = 2238 ē RMS

Electron end-point energy up to 3.27 MeV $\binom{214}{83}Bi$

0,0

0,5

1,0

1,5

2,0

Bad channels ratio (%)

p+ side

n+ side

FST Si module test results current status

10 from 42 Si modules were tested (13.04.2021)

3,0

3,5

4.0

1400

1600

1800

2000

Mean ENC Si module side (ē RMS)

2,5

Summary parameters of tested Si module bad channels ratio (left), <ENC_{side}> (center) and <SNR> (right)

2200

2400

2600

2800

8

9

10

11

15

16

12

Mean SNR

13

14

Forward Silicon Tracker

Upper half-plane without EM + light shielding (5 modules)

Forward Silicon Tracker status summary

- Forward Silicon Tracker FEE and Si modules test bench is designed and assembled;
- All 84 FEE PCB fully assembled (100%);
- 38 from 84 FEE PCB are tested (45 %);
- All tested PCB have $\langle ENC_{PCB} \rangle$ less than 1500 \bar{e} RMS;
- 36 from 38 tested PCB have bad channels ratio \leq 3%;
- 12 from 42 FST Si modules fully assembled (29%);
- 10 from 42 FST Si modules are tested (24%);
- All tested modules have $\langle ENC_{side} \rangle$ less than 2500 \bar{e} RMS;
- Most Si modules have mean SNR_{side} > 10 (mip signal amplitude distribution is separated from noise);
- All Si modules have bad channels ratio $\leq 3\%$;
- FST half-planes assembling are started.

Forward Silicon Tracker and beam detectors team

In the photo (from left to right): Zubarev Evgeny Streletskaya Ekaterina Topko Bogdan Topko Yulia Tarasov Oleg Kopylov Yury **Beyond the camera:** Khabarov Sergey Smirnov Alexander Sheremeteva Anastasiia Zamyatin Nikolay