Study of ZDC response in CC@4AGeV (Run6)

Elizaveta Zherebtsova INR RAS

BM@N Collaboration Meeting, 19/04/21

ZDC calorimeter at the BM@N experiment

In run 6 was collected data with carbon beam at 4AGeV .
ZDC calorimeter measure spectator energy.

Central part with 36 modules 7.5 x 7.5cm² Outer part with 68 modules 15 x 15cm²

Some features of the ZDC experimental data for CC@4AGeV will be presented.

Event selection

Experimental data:

- nHitsBC2 = 1, nHitsT0 = 1
- no fake trigger: nHitsVETO = 0
- hits BD >=2 (in trigger)

Simulation in GEANT4:

- all BM@N detectors
- DCM-QGSM model, C+C@4 AGeV
- event selection with BD detector (nHitsBD >= 2)

Features of the ZDC data for C+C reaction at 4.0 AGeV

Experimental data

Simulation

Carbon target

Empty target

- Significant fraction of events corresponds to carbon ions.
- How to reject these beam events?

• At given trigger there are only 50% of the most central events

Application of ML approach to select the events in reaction CC@4.0 AGeV

Train ML to recognize empty target events and then apply to experimental data.

E_{dep} distribution in ZDC modules with target E_{dep} distribution in ZDC modules without target

ZDC energy in experimental data:

Experimental data:

ML approach is able to recognize and reject beam carbon events in ZDC energy spectra.

Simulation:

The energy distribution of events measured in ZDC is shifted relative the data obtained MC MinBias. \rightarrow **The calibration should be checked.**

One-nucleon cluster calibration method for the ZDC calorimeter

- Calibration of ZDC modules was based on using cosmic muons
- To obtain a more uniform response of the calorimeter, a method was proposed for the reconstruction of single-nucleon clusters
- Single-nucleon clusters events: one spectator nucleon arrives at a given calorimeter module, with an energy equal to the beam energy

$$E_{cluster} = E_{central module N} + E_{N cluster modules}$$
$$E_{cluster} = E_{beam}$$

68	61	54	47	40	36	32	28	21	14	7
67	60	53	46	39	35	31	27	20	13	6
66	59	52	45	104 98 103 97	92 86 91 85	80 74 79 73	26	19	12	5
65	58	51	44	102 96 101 95	90 84 89 83	78 72 77 71	25	18	11	4
64	57	50	43	100 94 99 93	88 82 87 81	76 70 75 69	24	17	10	3
63	56	49	42	38	34	30	23	16	9	2
62	55	48	41	37	33	29	22	15	8	1

Cluster types:

68	61	54	47	4	0	3	6	3	2	28	21	14	7
67	60	53	46	3	39		35		1	27	20	13	6
66	59	52	45	104	98	92	86	80	74	26	19	12	5
				103	97 96	91 90	85 84	79	73				
65	58	51	44	101	03	89	83	77	71	25	18	14 13 12 11 10 9 8	4
64	57	50	43	100	94	88	82	76	70	24	17	10	3
63	56	49	42	3	8	34		30		23	16	9	2
62	55	48	41	3	7	33		29		22	15	8	1

68	61	54	47	40		36		32		28	21	14	7
67	60	53	46	3	39		35		1	27	20	13	6
66	50	50	15	104	98	92	86	80	74	26	10	12	5
00	39	32	45	103	97	91	85	79	73	20	19	12	2
65	50	51	44	102	96	90	84	78	72	25	10	11	4
0.5	30	51	44	101	95	89	83	77	71	23	10		
64	57	50	12	100	94	88	82	76	70	24	17	10	2
04	57	50	43	99	93	87	81	75	69	24	17	10	3
63	56	49	42	3	38		34		0	23	16	9	2
62	55	48	41	3	37		33		9	22	15	8	1

Cluster identification algorithm

1. For each module in the event, a cluster is built and the mutual arrangement of all clusters is considered.

2. The energy is redistributed (if the clusters have common, non-central modules).

- 3. 2 conditions are checked:
- for small modules:

$$E_{\text{central module N}} > 0.7 * E_{\text{cluster}} \& E_{\text{N cluster modules}} > 0$$

If both conditions are met simultaneously, the cluster is identified.

 $Calibration coefficient = \frac{\langle E_{centralmodule}(simulation) \rangle}{\langle E_{centralmodule}(\exp.data) \rangle}$

Results of single nucleon cluster calibration

Before application of the one-nucleon cluster calibration:

With application one-nucleon cluster calibration:

Results of application single nucleon cluster calibration

Distribution of the total reconstructed energy in the calorimeter in modeling and in experimental data

Application of the one-nucleon cluster calibration shows a **slighly difference** in energy spectra from cosmic muon calibration \rightarrow the calibration was done correctly.

Selection of events for ZDC with primary vertex cut

Z coordinate of primary vertex (PVz):

Reconstructed energy in ZDC with cut on PVz: -25cm <PVz < -23cm

Conclusion

- Rejection of carbon events was made by machine learning approach and cut on primary vertex.
- Cosmic muon calibration was checked with one-nucleon cluster calibration algorithm, calibration is correct.
- Cutting out beam events by different methods, the energy spectrum in the calorimeter does not match the simulation.

Future plans:

• Make the same procedures for Cu and Al target runs at 4 AGeV.