

Centrality determination in AuAu@4.5 AGeV with FHCal and forward hodoscope

Nikolay Karpushkin INR RAS

7th Collaboration Meeting of the BM@N Experiment at the NICA Facility 19.04.2021

Outline

- FHCal of BM@N centrality problem statement
- Supervised & Unsupervised ML approaches
- FHCal & forward hodoscope approach
- Application to the simulation files

Determination of centrality using hadron calorimeters by ML methods

Determination of centrality using hadron calorimeters by ML methods

			 _
	Hole 15x15 cm		

34 inner modules with sizes 15*15 + 20 outer modules with sizes 20*20 *Beam hole 15*15* Total weight – 17t

Determination of centrality using hadron calorimeters by ML methods

Calorimeter energy surface (single event)

100

75

Determination of centrality using hadron calorimeters by ML methods

54 "pixels" to train ML algorithm

Use of simulation files:

Input parameters – modules positions and energy depositions

Target variable – impact parameter

Expected result: online trigger for centrality estimation

Calorimeter energy surface (single event)

Supervised approach

- 1. Train-test split
- 2. Train the model:

Inputs:

- 1D arrays of energy depositions in calorimeter modules (Energy surface)
- Centrality class index (impact parameter label)

Model architecture:

3. Test model accuracy

Main goal: Confirm approach capabilities. Not to be used on real data.

AuAu 4.5AGeV DCMQGSM Supervised

AuAu 4.5AGeV DCMQGSM Supervised

Unsupervised approach – Deep Embedded Clustering

- input encoder feature decoder
- 2. Estimate cluster centroids: Encode data + TSNE + KMeans

3. Deep Embedded Clustering (<u>link</u>):

1. Train autoencoder

- a) Soft clustering of encodded data by Student's t-distribution
- b) Iteratively strengthen predictions by approximating the obtained distribution **Q** to the auxiliary target distribution **P**

AuAu 4.5AGeV DCMQGSM Unsupervised

12

AuAu 4.5AGeV DCMQGSM Unsupervised

FHCal & forward hodoscope

- Additional detector placed in the FHCal beamhole
- Measure charge of fragments at very forward rapidity region
- Online trigger for minbias/ centrality selection available

AuAu 4.5AGeV DCMQGSM FHCal&Hodo

Resolution: supervised, unsupervised, FHCal&Hodo

impact parameter resolution AuAu 4.5A GeV/c DCMQGSM

Conclusions

- Supervised&Unsupervised ML approaches are developped for centrality classes determination with forward hadron calorimeters with beam holes.
- Forward hodoscope is designed and manufactured to measure charge of fragments at very forward rapidity. A method for determining centrality using a front hodoscope and a calorimeter is presented.
- The results of applying the approaches to BM@N simulation data were shown. The centrality resolution and impact parameters determined by three methods are in a good agreement with each other.

Outlook

Further improvement of methods will be carried out. Git repository: <u>link</u>

Thank you for your attention!

BACKUP

Supervised

Unsupervised

Supervised

Unsupervised

- Train-test split of the same data.
- Need target variable to train (data labeling).
- Model dependent: if ML-model is trained with

one physical model, the spatial distributions of another model will hardly be reproduced. As

well as real physical data.

• May serve as a reference for unsupervised ML.

Supervised

- Train-test split of the same data.
- Need target variable to train (data labeling).
- Model dependent: if ML-model is trained with

one physical model, the spatial distributions of another model will hardly be reproduced. As well as real physical data.

- May serve as a reference for unsupervised ML.

Unsupervised

- Uses all available data and clusters them.
- No need of target variable.
- Model independent: one can take real physical data and cluster them. No need to use MC data first.
- How to check? Use secondary particles multiplicity distributions in centrality classes selected by ML-model.