

The Status of Identification in Argon Run, TOF400

Plotnikov V., Kapishin M., TOF700 group, GEM tracking group

Content

- Wide CSC residuals for Data at p<1 GeV/c
- Dependence of CSC/TOF400 residuals on P
- Taking into account the dependence of CSC/TOF400 residuals on p
- New TOF400 efficiency results
- Detailed GEM geometry
- $<dx_{GEM}>(p)$ compensation for Data and MC and $\sigma_{GEM}(p)$ smearing for MC

Content

- GEM efficiency
- CSC residuals in MC
- TODO

CSC residuals for Data

- The CSC residuals not Gaussian. The tails are very wide. Especially for 0<p<1.1 GeV/c
- $|mean_{0 -mean_{1.1 < p < 5}|~1.5 cm$
- σ_{0

BM@

 The number of low momentum tracks (0<p<1.1 GeV/c) <10% of all tracks (0<p<5 GeV/c)

CSC residuals for MC

• The CSC residuals close to Gaussian

- Peaks for 0<p<1.1 GeV/c and for 0<p<5 GeV/c are aligned
- σ_{0

BM@

- The Kalman Filter works well to extrapolate traks from thr GEMs to CSC
- Something wrong with CSC residuals for the Data!

BM@N <dx> vs p for CSC and TOF400 at Y intervals

 Strong dependence residuals on P obtained for CSC and TOF400

Vasilii Plotnikov, 19.04.2021

<dx> vs p at Y intervals (fit)

BM@N

	Constant	Slope	р0	p1
CSC, y<10 cm	2.647	-3.398	2.536	-0.505
10 <y<30 cm<="" td=""><td>2.193</td><td>-1.894</td><td>1.434</td><td>-0.227</td></y<30>	2.193	-1.894	1.434	-0.227
30 <y<50 cm<="" td=""><td>1.859</td><td>-1.591</td><td>1.078</td><td>-0.184</td></y<50>	1.859	-1.591	1.078	-0.184
y>50 cm	3.655	-3.686	1.284	-0.270
TOF, y<10 cm	3.255	-3.196	3.222	-0.688
10 <y<30 cm<="" td=""><td>2.430</td><td>-2.162</td><td>2.602</td><td>-0.521</td></y<30>	2.430	-2.162	2.602	-0.521
30 <y<50 cm<="" td=""><td>2.871</td><td>-2.556</td><td>2.307</td><td>-0.464</td></y<50>	2.871	-2.556	2.307	-0.464
y>50 cm	1.912	-1.881	1.325	-0.280

Vasilii Plotnikov, 19.04.2021

- During matching, we need to dynamically select the matching window according to the red lines
- To implement closest hit approach, we need to weigh the track-hit distances using red lines

New TOF400 efficiency results (run 4649)

BM@N

 After field compensation, the TOF400 efficiency increases by at least ~10-15%

Detailed vs simple GEM geometry

- New layers (black), frames (indigo), electronics (green) were added for each GEM sensitive volume
- Broken station was added
- Detailed geometry from D. Baranov

Taking into account detailed GEM geometry

BM@

- Material budget is calculated using straight tracks from the target
- Material budget has been significantly increased in GEM detailed geometry
- Much of the material budget comes from frames around the beam hole

BM@N GEM residuals compensation and smearing for Data and MC. $\sigma_{dx}(p)$ — Data — MC

12

BM@N GEM residuals compensation and smearing for Data and MC. <dx>

Vasilii Plotnikov, 19.04.2021

p, GeV/c

p, GeV/c

13

BM@N GEM residuals compensation and smearing for Data and MC

- $\sigma_{dx}(p)$ for MC matches $\sigma_{dx}(p)$ for Data
- Mean shift well compensated
- The mean shift is much less than σ_{dx} for all p

BM@N Cuts for calculating/applying GEM efficiency

Cuts for choosing events

- |PV-TargetCenter|<6 cm
- N_{3hitTracks}>2
- Cuts for choosing tracks
- |Track-PV|<2 cm
- $N_{SiHits} \ge 2$ and $N_{GemHits} \ge 4$
- 0.5<p<2 GeV/c

Applying Eff_{Norm} in MC

 Eff_{Norm} disabled for GEM6 at x<-50 cm

BM@N GEM6 efficiency, 0.5<p<2 GeV/c

— MC — Data

BM@NComparison of GEM efficiencies for Data and MC

- For the Data, the fluctuation of efficiency from bin to bin is larger than for the MC
- MC and Data efficiencies are close to each other in Yslices
- The largest discrepancy is obtained for low-X edges in Y-slices because of **low statistics**

CSC residuals in MC

BM@N

Vasilii Plotnikov, 19.04.2021

CSC residuals in MC

- $\sigma_{dx}(p)$ for MC in case of detailed GEM geometry matches $\sigma_{dx}(p)$ for Data
- <dx>(p) for MC in case of detailed GEM geometry shows strong dependence, especially for low p, because of multiple scattering

TODO

- Take into account strong <dx>_{csc}(p) dependency
- Look at the TOF400 residuals
- Examine the trigger efficiency

Thank you!

Backup

Data and MC Si/GEM efficiencies Data

High MC efficiency for Si3 at X~0 cm

 MC efficiency higher than Data efficiency on 3-5% in average for all GEM

BM@N Data and MC CSC efficiencies Data, good runs Comparison MC

- Good runs runs with $Eff_{CSC} > 40\%$ in the Main zone
- MC and Data efficiencies are close to each other

Data and MC TOF400 efficiencies comparison

 MC efficiency lower than Data efficiency on ~5% in average for all TOF400 planes

Vasilii Plotnikov, 19.04.2021

Detailed Si/GEM geometry

Material budget in the BM@N, Integrated radiation length, X/X0 [%]

- Made by Dmitriy Baranov
- Left plot current geometry, right plot new geometry
- New geometry gives additional background (embedding is aimed to solve it) and prevents $\pi^{\scriptscriptstyle +}$ from passing through identification detectors

Si+GEM+CSC+Extend features

- Short tracks are reconstructed using hits from last four GEMs
- Short tracks are extrapolated upstream and refitted with matched hits from first two GEMs and Silicones
- Tracks are extrapolated downstream and refitted with matched hits from CSC

Matching CSC hits at Y intervals

BM@N

Vasilii Plotnikov, 19.04.2021

Matching CSC hits at Y intervals

BM@N

Vasilii Plotnikov, 19.04.2021

Matching TOF400 hits at Y intervals

Matching TOF400 hits at Y intervals

Vasilii Plotnikov, 19.04.2021

EMON Control plots. Data after field compensation **vs** data before it

- The number of found π^+ increased by ~20%
- p_{full} spectrum became softer as expected

Control plots. Data vs MC

- P-spectrum of the data corresponds to the MC spectrum from 2 to $\sim 0.8 \text{ GeV/c}$
- Y-spectrum of data is consistent with MC spectrum from 2 to 3.2
- Pt-spectrum of data is in a good agreement with MC spectrum

BM@N Control plots. Detailed vs simple GEM geometry

- $N_{\pi^+,\text{detailed}}(p)/N_{\pi^+,\text{simple}}(p)$ increases with p
- $N_{K+,detailed}(p)/N_{K+,simple}(p)$ almost independent of p
- $N_{\pi+,detailed}/N_{\pi+,simple} \sim 0.6$, $N_{K+,detailed}/N_{K+,simple} \sim 0.74$

Vasilii Plotnikov, 19.04.2021

BM@N Control plots. Detailed vs simple GEM geometry

Vasilii Plotnikov, 19.04.2021

BM@N GEM1 efficiency, 0.5<p<2 GeV/c

BM@N GEM2 efficiency, 0.5<p<2 GeV/c

Vasilii Plotnikov, 19.04.2021

BM@N GEM3 efficiency, 0.5<p<2 GeV/c

Vasilii Plotnikov, 19.04.2021

BM@N GEM4 efficiency, 0.5<p<2 GeV/c

BM@N GEM5 efficiency, 0.5<p<2 GeV/c

0.2

n

0.2

0

-80-60-40-20

0

20

40

60

80

x, cm

Vasilii Plotnikov, 19.04.2021

0

20

40

80

x, cm

60

-80-60-40-20

BM@N Cuts for calculating/applying GEM efficiency

Cuts for choosing events

- |PV-TargetCenter|<6 cm
- N_{3hitTracks}>2

- Cuts for choosing tracks
- |Track-PV|<2 cm
- $N_{SiHits} \ge 2$ and $N_{GemHits} \ge 4$
- p<0 GeV/c

Applying Eff_{Norm} in MC

 Eff_{Norm} disabled for GEM6 and GEM5 at x>30 cm

GEM1 efficiency, p<0

BM@N

GEM2 efficiency, p<0

GEM3 efficiency, p<0

Vasilii Plotnikov, 19.04.2021

BM@N

GEM4 efficiency, p<0

GEM5 efficiency, p<0

GEM6 efficiency, p<0

