Current Progress in TOF700 Particle Identification Argon data run 7

Lalyo Kovachev^{1,2}, Yuri Petukhov², Vasily Plotnikov²

- 1. FPET Plovdiv University Paisii Hilendarski, Bulgaria
- 2. VBLHEP Joint Intitute for Nuclear Research, Russia

Argon data run 7

Ar beam 3.2 GeV/n Targets Al,C,Sn,Cu,Pb

Schematic drawing of the BM@N setup

TOF700 Particle Identification chain

For **Data** and **MC** we use the **same** Identification chain

TOF400 DCH1 TOF700

For MC we use DCM QGSM Generator

Si-GEM(data) tracks from V. Plotnikov

DCH tracks from **DCH** group

TOF700 hits from **Y. Petukhov**

Si-GEM tracks are extrapolated to the **DCH1** z-position and matched against the **DCH1** tracks

Successfully matched tracks are extrapolated to the **TOF400** and **TOF700** planes and matched against the **TOF400** and **TOF700** hits

Notations

"Good" Si-GEM tracks – those which pass cut selection.

"Good" tracks – successfully matched "Good" Si-GEM tracks with DCH tracks.

DxDCH1 – x-distance between **Si-GEM** and **DCH** tracks on **DCH1** plane.

DyDCH1 – y-distance between **Si-GEM** and **DCH** tracks on **DCH1** plane.

DxTOF400, DxTOF700 – x-distance between **Si-GEM+DCH** and **TOF400** and **TOF700** hits.

DyTOF400, DyTOF700 – y-distance between **Si-GEM+DCH** and **TOF400** and **TOF700** hits.

TOF700 Efficiency - $TOF700_{eff} = \frac{N_{matched tracks}}{N_{extr tracks}}$, where

N_{matched tracks} is the number of good Si-GEM+DCH tracks extrapolated to TOF700 <u>and</u> matched to hits.

N_{extr tracks} is the number of all good Si-GEM+DCH tracks extrapolated to TOF700.

N_{correct identified trs} is **Si-GEM+DCH** tracks identified in **TOF400** and **TOF700** and correspond to the **same particle mass square peak**.

DX Corrections DCH1

Good corrections results!

Negligible shifts of mean values of the order of a few millimeters.

DX Corrections DCH1

We use the fit function of sigma vs p/q dependence as a basis for a **new matching criteria** defined in sigma units.

DX Corrections TOF400

Negligible shifts of mean values of the order of a few millimeters.

DX Corrections TOF700

Negligible shifts of mean values of the order of a few millimeters.

Si-GEM tracks Cut Selection

Number of **Silicon hits** > **1 && GEM hits** > **3** (to skip fake tracks and tracks with bad parameters) Primary vertex cut for track's <u>length</u> calculation (-**3**.**5** < **Xpv** < **4**.**0** and -**1**.**0** < **Ypv** < **6**.**0**)

New Momentum-based Si-GEM-DCH si Matching Criteria

New Momentum-based Si-GEM-DCH-TOF400 Matching Criteria

Matching criteria: $\pm 2\sigma Dx$, $\pm 2\sigma Dy$

Much narrower Dx in low momenta for TOF700

Beta vs momentum

TOF400 TOF700 450 0 1000 \sim 400 800 350 0.8 0.8 300 600 0.6 0.6 250 200 400 0.4 0.4 150 He⁴ 100 200 0.2 0.2 50 0 Λ Λ 8 9 10 2 9 10 2 3 6 3 6 7 8 5 p/q, Gev/c/a p/q, Gev/c/q

Input Gem tracks are filtered through Drift Chamber but **a lot of tracks** which enter in to TOF400 acceptance do not enter in acceptance of Drift Chamber New matching criteria allows to identify more particles in low momentum intervals and improve **particle separation** in **TOF700** detector

XY-Efficiency for a good track Si-GEM + DCH matching with hit TOF700.

Decreased efficiency for negatively charged particles due to not optimal calibration due to low statistics. This is understood and will be fixed.

15

Particles mass square of <u>common</u> tracks of momenta below 1.5 GeV

We check the $(m/q)^2$ of each track, reconstructed by each system, to see if it is within a peak that corresponds to the same particle hypothesis

Conclusion

- * The analysis of **TOF700 matching efficiency** was performed. It showed sufficient efficiency for both the hit **detection** and **matching** procedures.
- * **PID** procedure allows for **separation** of π , K, p, He3, d/He4, t in the area of up to 2 GeV/c. Separation of higher momentum regions requires a decrease in the time of flight error.
- * Further analysis and calibration should **improve** identification and results.

Thank you for your attention!

BACKUP

Beta vs momentum

Beta vs momentum

Data plot chosen to represent **similar statistics** actual data statistics on the next slide

