

### "Upgrade of the CMS Detector"



Project for 2022-2026

#### JINR Topic 02-0-1083-2009/2023 "CMS. Compact Muon Solenoid at the LHC"



Project leader: V.Yu. Karjavin Scientific leader: I.A. Golutvin

8 апреля 2021 г. Физическая секция НТС ЛФВЭ







### Participants of Projects

- Motivations, goals and tasks
- □ Results expected for 2022-2026
  - ✓ HGCal
  - ✓ Muon System
- □ Funding for 2022-2026

The Report on Completion of the Project "Upgrade of CMS Detector through 2020" for 2013-2020 years was presented at the 54th meeting of the PAC for Particle Physics, 18 January 2021



### **Participants of Project**



# 44 participants from JINR23 participants from JINR member-states

#### Дирекция (0.1)

В.А. Матвеев (0.1)

#### Группа советников и консультантов Б.С. Юлдашев (0,1)

#### ЛФВЭ (27 участников, 15.3)

В.Ю. Алексахин (0.2), С.В. Афанасьев (0.3), Д.В. Будковский (0.2), П.Д. Бунин (1.0), М.Г. Гавриленко (0.4), А.О. Голунов (0.8), И.А. Голутвин (1.0), И.Н. Горбунов (0.2), Н.В. Горбунов (1.0), Н.Н. Евдокимов (1.0), Ю.В. Ершов (1.0), И.А. Жижин (0.2), Н.И. Замятин (0.1), А.В. Зарубин (1.0), А.Ю. Каменев (1.0), В.Ю. Каржавин (1.0), А.М. Куренков (1.0), А.В. Ланёв (0.1), А.И. Малахов (0.2), А.М. Маканькин (0.3), В.В. Перелыгин (1.0), В.А. Смирнов (0.9), Е.В. Сухов (0.5), О.В.Теряев (0.1), Е.В.Устинов (0.5), В.В. Шалаев (0.2), С.В. Шматов (0.1)

#### ЛИТ (13 участников, 5.5)

Н.Н. Войтишин (0.8), А.О. Голунов (0.5), В.В. Кореньков (0.4), В.В. Мицын (0.8), Д.А. Олейник (0.1), Г.А. Ососков (0.1), В.В. Пальчик (0.8), А.Ш. Петросян (0.1), Р.Н. Семенов (0.1), Т.А. Стриж (0.4), В.В. Трофимов (0.8), А. Хведелидзе (0.5), И.А.Филозова (0.1)

#### ЛЯП (2 участника, 0.5)

Г. Адамов (0.3), З. Цамалаидзе (0.2)

# **16** paid and **5** unpaid (4 PhD and 1 emeritus) authors from JINR

#### 6 paid authors from JINR member-states



| Laboratory       | Number of<br>Participants | FTE  |
|------------------|---------------------------|------|
| JINR Directorate | 1                         | 0,1  |
| JINR GA&C        | 1                         | 0,1  |
| LHEP             | 27                        | 15,3 |
| LIT              | 13                        | 5,5  |
| LNP              | 2                         | 0,5  |
| JINR             | 44                        | 21,5 |



## JINR in CMS Collaboration (Tasks)



Over 25 years JINR has been participated in the CMS experiment at the LHC, starting the very beginning of the detector concept development

 ✓ full responsibility within the RDMS Collaboration for the design, construction, commissioning, operation of the Endcap Hadron Calorimeters (HE) and First Forward Muon Stations (ME1/1)

JINR scientists play active role in the CMS Physics Programme. They contribute actively in data taking and processing, data analysis for the purpose of obtaining new physics results in the following fields:

- searches for physics beyond SM with the dimuon final states (low-energy gravity, dark matter, extended gauge models, etc.)
- ✓ searches for physics beyond SM with missing energy final states (extended Higgs sector, dark matter, lepton-flavour violation)
- ✓ studies of Higgs boson properties and search for new scalar bosons beyond SM in the lepton decay channels
- ✓ studies of jet multiple production for searches of microscopic black holes and other BSM signals
- studies of muon pair production in Drell-Yan process to test SM at new energy scale, measurement of weak mixing angle and parton distribution functions (PDF)
- jet measurements for studies of hadronization, improvement of PDF and QCD coupling precision

Since the beginning of the JINR Seven-Year Plan in 2017 up to now JINR physicists contributed in to

- ✓ 13 CMS public paper in scientific journals (of more than 510 CMS papers in total)
- ✓ 18 CMS notes with physics analysis
- ✓ 6 CMS operation and upgrade notes
- ✓ 22 paper in referred journals
- ✓ number of papers with CMS results review and future physics, and proceedings (35 papers in a total)
- more 70 talks were given by JINR physicists for the CMS project at the international conferences.



# **LHC Schedule**



The Large Hadron Collider (LHC) provided proton-proton collisions since 2009

- ✓ During Run 1 (2010–2012) LHC operated at 7 TeV first 2 years, delivering integrated luminosity ≈6 fb<sup>-1</sup>, and in 2012 at 8 TeV, delivering ≈ 23 fb<sup>-1</sup> (discovery of the Higgs boson)
- ✓ Run 2 started in 2015 at 13 TeV with instantaneous luminosity 1.7×10<sup>34</sup>cm<sup>-2</sup> s<sup>-1</sup>, exceeded the design value. Physics tasks: detailed studies of the Higgs boson, standard model (SM) processes and searches for physics beyond the SM



✓ After long shutdown LS3 the HL-LHC operational phase is scheduled to start in 2027. By the 2030 planned to have instantaneous luminosity 5×10<sup>34</sup>cm<sup>-2</sup> s<sup>-1</sup> with integrated luminosity ~3000 fb<sup>-1</sup>.



### **HL-LHC Physics Goals (1)**



The main goal of the HL-LHC is to make New Discoveries

- Detailed study of the Higgs boson to show that it is indeed a SM Higgs boson (width, branchings, couplings, rare decays)
- ✓ Looking for new scalar states of extended Higgs sector
- ✓ Wide searches for physics beyond the SM (dark matter candidates, supersymmetry, TeV-scale gravity, extended gauge sector, etc.)

Dark photons decaying

to displaced

 $\checkmark\,$  Precision tests of the SM, including rare processes

New resonances in Hi-mass Dilepton States





 $\gamma_D$ 

Higgs Projections for 300 fb<sup>-1</sup> and 3000 fb<sup>-1</sup>



For the Higgs boson, the coupling constants to the SM particles will be measured with a precision of 5-14% and 2-10% given the integrated luminosities of 300 and 3000 fb<sup>-1</sup>, respectively

The physics reach of the CMS achievable with HL-LHC will be increased, e. g. as

- ✓ for new resonances up to  $m_{Z'}$  ~ 6.2-7 TeV (~ 4.56-5.15 TeV with RUN2 data)
- ✓ dark photon masses (1−30 GeV) and lifetimes (ct = 0.01−10 m) in the context of Dark Supersymmetry models.



### **HL-LHC Physics Goals (2)**



HL-LHC physics aims at reactions initiated by vector boson fusion (VBF) and those involving boosted objects giving rise to narrow or merged jets (e. g. from hadronic decays of the W and Z bosons, the Higgs boson, new Higgs states, and possibly other new particles in the same mass range). A fine lateral and longitudinal granularity of the calorimeter is required for the observation of these narrow jets.

The LHC could produce many Long Lives Particles (LLP) with MeV - TeV masses that would lead to signatures involving displaced vertexes. These states can not be produced anywhere else, but with existing detectors can not discover (need to be reconstructed without tracker).



The capability of the upgraded detector has to extend the possibility of a dedicated triggering at Level-1 for displaced objects with a decay length, lifetime, larger than a few centimeters.



### **HGCal Impact on Physics**







CERN-LHCC-2015-10 LHCC-P-008 CMS-TDR-15-02 ISBN 978-92-9083-417-5 1 June 2015

### TECHNICAL PROPOSAL FOR THE PHASE-II UPGRADE OF THE COMPACT MUON SOLENOID

TOR NUCCESS

This Technical Proposal presents the upgrades foreseen to prepare the CMS experiment for the High Luminosity LHC. In this second phase of the LHC physics program, the accelerator will provide to CMS an additional integrated luminosity of about 2500 fb<sup>-1</sup> over 10 years of operation, starting in 2025.

> CERN-LHCC-2017-023 CMS-TDR-019 9 April 2018

> > CERN-LHCC-2017-012 CMS-TDR-016 12 September 2017

This Technical Proposal presents the upgrades foreseen to prepare the CMS experiment for the High Luminosity LHC. In this second phase of the LHC physics program, the accelerator will provide to CMS an additional integrated luminosity of about 2500 fb<sup>-1</sup> over 10 years of operation, starting in 2025. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented p-p luminosity, the CMS collaboration will need to address the aging of the present detector and to improve the ability of the apparatus to isolate and precisely measure the products of the most interesting collisions. This document describes the conceptual designs and the expected performance of the upgrades, along with the plans to develop the appropriate experimental techniques. The infrastructure upgrades and the logistics of the installation in the experimental area are also discussed. Finally, the initial cost estimates of the upgrades are presented.

The Phase-2 Upgrade the CMS endcap calorimeter

**Technical Design Report** 

The Phase-2 Upgrade

of the CMS Muon Detectors

CMS Collaboration

According to the Addendums to the Memorandum of Understanding for Collaboration in the Construction of the CMS Detector, JINR participate in

- Highly Granularity Calorimeter (HGCal) Project with total contribution of 2.2 MCHF
- ✓ upgrade of the Cathode Strip Chambers (CSC) muon chamber with total contribution of 76 kCHF

**Technical Design Report** 

CMS Collaboration





# High-Granularity Calorimeter HGCal



# **HL-LHC Requirements for Calorimeter Systems**



The existing endcap calorimeters, the PbWO<sub>4</sub>-based electromagnetic calorimeter (EE) and the plastic scintillator-based hadron calorimeter (HE), were designed for integrated luminosity of 500 fb<sup>-1</sup>

HL-LHC integrated luminosity will became 10 times more - 3000 fb<sup>-1</sup>, posing significant challenges to radiation tolerance of detectors and pileup

- Fluence ~ $10^{16}$  n/cm<sup>2</sup>
- Integrated dose ~2 MGy

The **high granularity calorimeter** (**HGCal**) is designed to replace the existing endcap calorimeters

### Main design requirements for HGCal :

- radiation tolerance
- dense calorimeter structure to preserve lateral compactness in order to simplify two shower separation and the observation of narrow jets
- Iongitudinal granularity to provide a good electromagnetic energy resolution, pattern recognition and discrimination against pileup
- time precision measurement of high energy showers



CMS p-p collisions at 7 TeV per beam 1 MeV-neutron equivalent fluence in Silicon at 3000 fb<sup>-1</sup>

### Fluence (1 MeV equivalent neutrons)





### Structure of the HGCal



### Key Parameters (from TDR):

- HGCal covers 1.5 <  $\eta$  < 3.0 (~640 m² of silicon sensors, ~370 m² of scintillators)
- full system maintained at -30°C
- 6.1M Si channels, 0.5 or 1.1 cm<sup>2</sup> cell size 240k scint.-tile channels (η–φ)
- data readout from all layers
- trigger readout from alternate layers in CE-E and all in CE-H
- ~31000 Si modules (incl. spares)

Longitudinal structure of the HGCAL consists of three types of cassettes:

- CE-E cassetts,
- **CE-H** silicon sensor cassettes
- **CE-H** mixed silicon/scintillator cassettes.



**Active Elements:** 

- Si sensors (full and partial hexagons) in CE-E and high-radiation inner region of CE-H
- SiPM-on-Scintillating tiles in low-radiation region of CE-H

Electromagnetic calorimeter (CE-E): Si, Cu/CuW/Pb absorbers, 28 layers, 25.5  $X_0$  & ~1.7  $\lambda$ 

Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 22 layers, ~9.5  $\lambda$  (including CE-E)



### **HGCal Active Elements**



The active detector is formed into cassettes with cooling plate with silicon and scintillation modules



- Front-end electronics on the modules
- Readout and control through motherboards
- Powering via DCDC converters now located at the front-end

#### Silicon sensors in CE-E and CE-H





### JINR Responsibility in the HGCal Project



The Full Cost of the CMS HGCal Project is 67.127 MCHF

According to the Addendum № 14 to the MoU (CERN-MoU-2019-009) JINR has contributed to

- ✓ production of CE-H cooling plates (1210 kCHF)
- ✓ purchase of silicon sensors (700 kCHF)
- ✓ purchase of SiPM photosensors (200 kCHF)
- According to the MoU between CMS and JINR (CMS-2010-010) JINR obligations are:
- ✓ production of multi-cassette cold-room facility (90 kCHF)
- ✓ testing and diagnostic of CE-H cassette in 2022-2025
- ✓ assembly and commission of HGCal in 2023-2026

JINR has committed to participated in the HGCal project with total contribution of 2.2 MCHF in CORE CMS COLLABORATION

### ANNEX 4

#### Deliverables and Assigned Funding for the individual Items by Funding Agency

(including Estimated Costs)

|             | Cost Book Items                              |         |       |       |             |            | Ass          | sign    | ed I              | Fund   | Shar      | ring   | (al      | nun        | nber     | s ir     | kCHF)    |             |         |          |        |                |         | Tot                       | als            |
|-------------|----------------------------------------------|---------|-------|-------|-------------|------------|--------------|---------|-------------------|--------|-----------|--------|----------|------------|----------|----------|----------|-------------|---------|----------|--------|----------------|---------|---------------------------|----------------|
| Item number | Item name                                    | Austria | CERN  | China | Croatia     | France-CEA | France-IN2P3 | Georgia | Germany-Helmholtz | Greece | India     | Latvia | Malaysia | Montenegro | Pakistan | Portugal | RDMS-DMS | KDMS-KUSSIA | Taipei  | Thailand | Turkey | United Kingdom | USA-DOE | Total Assigned<br>Funding | Estimated Cost |
| 1.1         | CE Electromagnetic Calorimeter (CE-E)        |         |       | -     |             | _          | 259          |         | -                 |        |           |        |          |            |          |          |          |             |         | -        |        |                |         | 259                       | 258            |
| 1.2         | CE Hadronic Calorimeter (FH+8H = CE-H)       |         | 2'324 | -     |             | -          |              |         |                   |        | -         |        |          |            | 1'100    |          |          |             | 1       | -        |        |                |         | 3'424                     | 3'424          |
| 1.3         | Cooling                                      |         | 6'913 | -     |             |            | 938          | 386     |                   |        | _         |        |          | -          |          |          |          |             |         | -        |        |                |         | 8'237                     | 7'618          |
| 1.4         | Dry Gas System                               |         | 60    | -     |             |            |              |         |                   |        |           |        |          |            |          |          |          |             |         | -        |        |                |         | 60                        | 60             |
| 1.5         | Mechanical Assembly                          |         | 80    | -     |             | -          |              |         |                   |        |           |        |          |            |          |          |          |             | -       | -        |        |                |         | 80                        | 80             |
| 1           | Mechanical Systems                           |         | 9'377 | -     |             |            | 1'197        | 386     |                   |        | _         |        |          |            | 1'100    |          |          |             |         |          | -      |                |         | 12'060                    | 11'441         |
| 2.1         | CE-E Cassettes                               |         | 221   | _     |             |            | 622          | 500     |                   | _      |           | _      |          |            | 1 100    | _        | _        |             | _       | _        |        |                |         | 843                       | 97(            |
| 2.2         | CE-H (Si-only) cassettes                     |         |       | -     |             |            | JEE          |         |                   |        |           |        |          |            |          |          | 205      |             |         | -        | 69     |                | 7       | 370                       | 411            |
| 2.3         | CE-H (mixed) cassettes                       |         |       | -     |             |            |              |         |                   |        | -         |        |          |            |          |          | 975      |             |         | -        | 215    |                | 25      | 1'156                     | 1'22/          |
| 2.4         | Cassettes Assembly Centre and Tooling        |         | 100   | -     |             |            | 40           |         |                   |        | -         |        |          |            |          |          | 545      |             |         | -        | 213    |                | 1/0     | 200                       | 701            |
| 2.4         | Transport (assembly sites to CEBN)           |         | 100   | -     | -           | -          | 49           | -       |                   | -      | -         |        |          |            | -        | _        | -        |             | -       | -        |        |                | 149     | 290                       | 2.90           |
| 2           | Constant                                     |         | 221   |       |             |            | 671          |         |                   |        |           |        |          |            |          |          | 1'210    |             | 12      |          | 202    |                | 204     | 21600                     | 2'021          |
| 9.1         | Sensor Production                            | 000     | 321   | 600   | 450         | 200        | 1954         |         |                   | 50     | 613       | 290    | 210      | 100        |          |          | 0 700    | 1 64        | 11600   |          | 620    | 11000          | 6'450   | 2 689                     | 3 027          |
| 9.1         | Selisor Production                           | 900     | 3 300 | 699   | 450         | 300        | 1804         |         |                   | 50     | 512       | 200    | 320      | 190        |          |          | 9 700    | 1 01        | 1098    | -        | 030    | 1000           | 0.459   | 21433                     | 21 513         |
| 4.1         | Assembly Center and Tablian                  | 300     | 3 300 | 699   | 450         | 300        | 1 904        | -       |                   | 50     | 210       | 380    | 320      | 130        |          | -        | 9 700    | 3 01        | 1 0 9 8 | -        | 038    | 1 000          | 0 459   | 21 435                    | 21 513         |
| 4.1         | Pasembly centre and rooming                  |         |       | 127   |             | -          |              | -       |                   | -      | 127       |        | -        |            | -        | -        |          |             | 127     | -        |        |                | 255     | 037                       | 03/            |
| 4.2         | Sensor Wodule test stations                  |         |       | 49    |             | -          |              | -       |                   |        | 49        | -      | -        |            |          | _        |          |             | 49      | -        | 98     |                | 20      | 245                       | 245            |
| 4.3         | Silicon Module components                    |         |       | -     | -           | -          |              |         |                   |        | 163       |        |          | _          |          |          | -        | 4 85        | 9       |          | 281    |                | 29      | 3'532                     | 3'351          |
| 4.4         | Si Modules Production - Components on PLB    |         | 98    | 25    |             | _          | -            | _       |                   | _      | 25        | -      | -        |            |          | _        |          |             | 25      | -        | -      | -              | 95      | 267                       | 266            |
| 4           | Silicon Modules                              |         | 98    | 201   |             |            |              | _       |                   |        | 364       | _      |          |            |          |          | _        | 2 85        | 9 201   |          | 379    |                | 379     | 4'481                     | 4'479          |
| 5.1         | SIPM - Photosensors                          |         |       | -     |             |            |              | _       |                   |        |           |        |          |            |          | _        | 200      | 66          | 7       | -        |        |                | 851     | 1'718                     | 1'718          |
| 5.2         | Plastic scintillator                         |         |       |       | -           | -          |              |         |                   |        |           | -      |          |            |          |          |          | 83          | 2       | _        |        |                |         | 832                       | 832            |
| 5.3         | Wrapping (ESR film)                          |         |       |       |             |            |              | -       |                   |        | -         |        |          |            |          |          |          |             |         | _        |        |                | 111     | 111                       | 111            |
| 5.4         | Assembly Centre and Tooling                  |         |       |       |             |            | <u> </u>     |         | 100               |        |           |        |          |            |          | · .      | 90       |             | 1       | _        |        |                | 90      | 280                       | 270            |
| 5.5         | Scintillator/SiPM Module Production          |         |       |       |             |            |              |         |                   |        |           |        |          |            |          |          |          |             |         |          |        |                | 3       | 3                         | 14             |
| 5           | Scintillator/SiPM Modules                    |         |       |       | -           |            | 5            |         | 100               |        |           |        |          |            |          |          | 290      | 1 49        | 9       |          |        |                | 1'055   | 2'944                     | 2'945          |
| 6.1         | Front-end System (Silicon sensors)           | · ·     | 637   |       | 400         | 380        | 1719         |         |                   |        | 300       | 1      | 428      |            |          |          |          |             | 701     | 100      |        |                | 1'939   | 6'604                     | 5'778          |
| 6.2         | Front-end System (Scintillator/SiPM sensors) |         | 150   |       | _           |            |              |         |                   |        |           |        | 122      |            |          |          | _        |             |         |          |        |                | 386     | 658                       | 872            |
| 6.3         | Front-end System (Common to Silicon and      |         |       |       |             |            |              |         |                   |        | 1         |        |          |            |          |          |          |             |         |          |        |                |         |                           |                |
|             | SIPM)                                        |         | 1821  | -     |             |            | 322          | -       |                   | -      |           |        |          |            | -        | 3        | 1        | -           | -       | -        | 128    |                | 1973    | 4'605                     | 4'164          |
| 6.4         | LIOCK and Control                            |         |       | -     |             | 320        |              |         |                   |        | -         |        |          |            |          |          |          | -           | -       | -        |        |                | 180     | 500                       | 500            |
| 6.5         | Power Distribution                           |         | 3'493 | -     |             | -          | -            | _       |                   |        |           |        | -        | _          | _        | _        |          | -           | -       | -        | 468    |                | 1'525   | 5'486                     | 4'448          |
| b           | Electronics and Electrical Systems           |         | 6'101 |       | 400         | 700        | 2'041        |         |                   |        | 300       |        | 550      |            |          | 3        | 1        |             | 701     | 100      | 596    |                | 6'003   | 17'853                    | 15'762         |
| 1.1         | DAQ                                          | -       | 1'183 | -     |             |            |              |         |                   |        | 177       |        |          |            |          |          |          | -           | -       | -        | 198    |                |         | 1'558                     | 2'447          |
| 7.2         | Ingger                                       |         | 72    | -     | 500         | -          | 581          |         |                   |        | 607       |        |          | _          | _        |          |          | -           | -       | -        | 10-    | 2'500          |         | 4'260                     | 3'779          |
| /           | Backend System (Trigger and DAQ)             |         | 1'255 |       | 500         |            | 581          |         |                   |        | 784       |        |          |            |          |          |          |             |         | -        | 198    | 2'500          |         | 5'818                     | 6.226          |
| 8.1         | DCS                                          | -       | 107   | -     |             | _          |              |         |                   | 150    | _         |        |          |            |          |          |          | -           | -       | -        |        |                |         | 257                       | 257            |
| 8.2         | DSS                                          |         | 191   | _     |             |            |              |         |                   | 150    |           |        |          |            |          |          |          | -           | -       | _        |        |                |         | 341                       | 341            |
| 8           | Slow control                                 |         | 298   |       |             |            |              |         |                   | 300    |           |        |          |            |          |          |          |             |         |          | 100    |                |         | 598                       | 598            |
| 9.1         | Assembly Areas                               |         | 294   | -     | -           |            | 46           |         |                   |        |           | -      |          |            |          |          |          | -           | -       |          |        |                | 315     | 655                       | 655            |
| 9.2         | CE-E Assembly                                |         | 33    | -     | -           | -          |              |         |                   |        | <u> </u>  |        |          |            |          |          |          | 3.          | 2       | -        |        |                |         | 65                        | 65             |
| 9.3         | CE-H Assembly (at Point 5)                   |         | 35    | -     |             |            |              |         |                   |        |           |        |          |            |          |          |          | -           | -       | -        |        |                | 35      | 70                        | 70             |
| 9.4         | CE-E-CE-H Integration                        |         | 100   | _     |             | _          |              | 20      |                   |        | _         |        |          |            |          |          |          | _           | -       | -        |        |                |         | 120                       | 120            |
| 9           | Detector Assembly (on surface)               |         | 462   |       | 1           |            | 46           | 20      |                   |        |           |        |          |            |          |          |          | 3           | 2       |          |        |                | 350     | 910                       | 910            |
| 10.1        | CE installation in UXC                       |         | 82    |       |             |            |              | 94      |                   |        |           |        |          |            |          |          |          |             |         |          |        |                | 50      | 226                       | 226            |
| 10          | Installation and Commissioning               |         | 82    |       | Constant of |            | 1.000        | 94      |                   |        | Sec. 1. 1 |        |          |            |          |          |          |             |         |          | 1000   | 10000          | 50      | 226                       | 226            |
| 10          |                                              |         |       | _     | _           |            |              | _       |                   | _      |           |        | _        |            |          | _        |          |             |         |          |        |                |         |                           |                |



# **CE-H Cooling Plates (1)**



#### Production steps:

- Copper sheets quality control
- Copper sheet milling from both sides
- Vacuum table with rotation and transportation system
- Tube electroplating
- Tube bending
- Tube/fitting orbital welding
- Tube and groove tinning
- Ultrasonic cleaning
- Soldering using preheating table
- Final plate polishing
- Cooling Plates quality control (geometry, pressure, welding)
- Packaging and transportation



#### Material:

### Oxygen-free copper plates

- thickness 6 mm
- from 1300x900 to 2300x1300

### Cooling tube

- 4 mm stainless steel tube
- length from 6m to 13m





## **CE-H Cooling Plates (2)**



#### Two prototypes were produced

- $\checkmark$ 1<sup>st</sup> prototype delivered in 2020
  - -CE-H (Si) plate of minimum size
  - -simplified geometry
  - -Iterative surface milling: from 8 mm sheet to 6 mm plate
  - -milling precision cross-checked by FNAL
- ✓ 2<sup>nd</sup> prototype ready in 2021
  - -CE-H (mixed) plate of maximum size
  - -using 6-mm copper sheets





#### Plans for late 2021 & early 2022

✓ two adjacent prototypes to test a 60° segment
✓ search for different manufacturers

#### Plans for mass production

- ✓ tender to be held in 2022
- ✓546 plates to be delivered at CERN in 2022–2024



### Multi-cassette cold-room facility



#### Testing and diagnostic of dual use multi-cassettes (CE-E and CE-H)

- Up to 7 cassettes testing in cold environment (room cooled to -35<sup>0</sup> C) simultaneously
- The duration of tests of one cassettes batch is ~2 weeks including test with cosmic muons



#### Will be set up in 2021-2022 and operate in 2022-2025

To be done: production of multi-cassette cold-room facility (design, mechanical assembly, services and cables preparation) Development of cosmic test setup, DAQ, trigger and detector control



### **HGCal Project Schedule**



| 1  | <b>Cassettte and Detector assembly an</b>      | d commissioning        |       |     | 202 | 21    |         |       |        | 20    | 22 |       |     |      |        | 2023  |        |         |        |       | 2      | 024    |        |        |       |        | 2025  |     |       |        |       | 2026  | i    |        |
|----|------------------------------------------------|------------------------|-------|-----|-----|-------|---------|-------|--------|-------|----|-------|-----|------|--------|-------|--------|---------|--------|-------|--------|--------|--------|--------|-------|--------|-------|-----|-------|--------|-------|-------|------|--------|
| 2  |                                                |                        | 12    | 3 4 | 56  | 78    | 9 # # # | # 1 2 | 234    | 56    | 78 | 9 # : | # # | 123  | 345    | 67    | 89     | # # ;   | # 1 2  | 2 3 4 | 156    | 578    | 9 #    | # #    | 123   | 3 4 5  | 6 7 8 | 39# | # # # | 123    | 3 4 5 | 67    | 89   | # # #  |
| 3  | cassette production                            |                        |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 4  | prepare cassette assembly site at CERN         | 11-May-21 to 7-Mar-22  |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 5  | develop assembly and testing procedures        | 7-Mar-22 to 24-Feb-23  |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 6  | 1st cassette with final elements assembled     | 24-Feb-23 to 25-May-23 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 7  | cassette preproduciton (5%)                    | 25-May-23 to 22-Oct-23 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 8  | cassette production (first 50%)                | 22-Oct-23 to 15-Jul-24 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 9  | cassette production (100%)                     | 19-Aug-24 to 16-Apr-25 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 10 |                                                |                        |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 11 |                                                |                        |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 12 |                                                |                        |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 13 | detector assembly                              |                        |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 14 | CE-E1 stacking of cassettes                    | 19-Feb-24 to 16-Sep-24 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 15 | CE-H1 insertion of cassettes                   | 19-Feb-24 to 16-Sep-24 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 16 | integration of CE-H1 (sector by sector)        | 13-May-24 to 16-Sep-24 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 17 | CE-E1 mechanical assembly on CE-H              | 16-Sep-24 to 30-Sep-24 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 18 | integration of CE-E1 part and finishing        | 30-Sep-24 to 09-Jun-25 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 19 | Sector tests of full CE1 (at room temperature) | 30-Oct-24 to 11-Jun-25 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 20 | HGCAL1 thermal screen installation             | 11-Jun-25 to 11-Jul-25 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 21 | HGCAL1 cold tests                              | 11-Jul-25 to 09-Oct-25 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 22 | HGCAL1 lowering to UX5                         | 26.Jul.26              |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 23 |                                                |                        |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 24 | CE-E2 stacking of cassettes                    | 18-Oct-24 to 16-May-25 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 25 | CE-H2 insertion of cassettes                   | 18-Oct-24 to 16-May-25 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        | _     |        |       |     |       |        |       |       |      |        |
| 26 | integration of CE-H2 (sector by sector)        | 21-Feb-25 to 16-May-25 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 27 | CE-E2 mechanical assembly on CE-H              | 16-May-25 to 30-May-25 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 28 | integration of CE-E2 part and finishing        | 30-May-25 to 31-Oct-25 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 29 | Sector tests of full CE2 (at room temperature) | 20-Jun-25 to 21-Nov-25 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 30 | HGCAL2 thermal screen installation             | 21-Nov-25 to 21-Dec-25 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 31 | HGCAL2 cold tests                              | 21-Dec-25 to 21-Mar-25 |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 32 | HGCAL2 lowering to UX5                         | 06.Sep.26              |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 33 |                                                |                        |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 34 |                                                |                        |       |     |     |       |         |       |        |       |    |       | 1   |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 35 |                                                |                        |       |     | CE  | -E ca | ssette  | prep  | aratio | ons   |    |       |     | sta  | cking  | of Cl | E-E ca | ssett   | es, ir | nsert | ion c  | of CE- | H cas  | sette  | S     |        |       |     |       |        | con   | tinge | ncy  |        |
| 36 |                                                |                        |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 37 | based on EDMS 2276592                          |                        |       |     | CE  | -E ca | ssette  | prod  | uctio  | n     |    |       |     | inte | egrati | ion o | f CE-E | and     | CE-H   | l, wa | rm t   | ests   |        |        |       |        |       |     |       |        | low   | ering | of e | ndcaps |
| 38 | Oct-30-2020                                    |                        |       |     |     |       |         |       |        |       |    |       |     |      |        |       |        |         |        |       |        |        |        |        |       |        |       |     |       |        |       |       |      |        |
| 39 |                                                |                        |       |     |     |       |         |       |        |       |    |       |     | the  | mal s  | scree | n inst | allati  | on ai  | nd co | old te | ests c | f full | y asse | emble | ed end | lcaps |     |       |        |       |       |      |        |
|    |                                                |                        | 1 1 1 |     |     |       |         |       |        | 1.1.1 |    |       |     |      | 1.1    | 1 I I |        | - I - I |        | 1.1   |        |        |        |        | 1.1   | 1 1 1  |       |     |       | i I I. |       | 1 1 1 |      |        |





### **Upgrade of the Endcap Muon System**



# **Motivations/Benefits for Muon Upgrade**





to detectors, readout, DAQ and trigger electronics.

### The main task of ME CSC Phase 2 upgrade:

modernization of CSC electronics on the inner rings Muon stations (Mex/1), where the rates is higher with respect to the outer stations



### Contribution of RDMS-JINR in Muon System upgrade during LS2 period :

- Design and construction of 120 new Low Voltage Distribution boards (LVDB-5)
- Assembly, installation and commissioning of the 180 inner muon chambers
- Modernization of the ME1/1 cooling system
- Endcap Muon System upgrade infrastructure



# JINR Responsibility in the Muon Upgrade



The Full Cost of the CMS Muon Upgrade is 21.437 MCHF

CERN-MoU-2019-008

# According to the Addendums 13 to the MoU (CERN-MoU-2019-008) JINR contribute to CORE:

- ✓ upgrade of the CSC electronics (76 kCHF)
- ✓ RPC Upgrade Project (75 kCHF paid by Georgia Institutions)

#### Also, JINR group participates in R&D works:

- ✓ CMS CSC ageing study at GIF++
- ✓ study of CSC characteristics in HL-LHC conditions with uncorrelated background.
- ✓ study of methods for eliminating the Malter current in a cathode strip chamber.
- $\checkmark$  participation in the new gas mixture studies
- ✓ development and test of an algorithms for track segments reconstruction in the CSC chambers.

|             | Cost Book Items                    |          |       |       |          |       |              | Assi         | gne     | d Fu  | nd Sh | aring | all nun | nbers in | kCH   | F)          |          | T     |           |           |         | Tot                       | als            |
|-------------|------------------------------------|----------|-------|-------|----------|-------|--------------|--------------|---------|-------|-------|-------|---------|----------|-------|-------------|----------|-------|-----------|-----------|---------|---------------------------|----------------|
| Item number | Item name                          | Bulgaria | CERN  | China | Colombia | Egypt | France-IN2P3 | Germany-BMBF | Hungary | India | Iran  | Italy | Korea   | Mexico   | Qatar | RDMS-Russia | RDMS-DMS | Spain | Sri Lanka | USA-DOE   | USA-NSF | Total Proposed<br>Funding | Estimated Cost |
| 2.2.1       | Minicrate System                   |          |       |       |          |       |              | 948          | 100     |       |       | 1'472 |         |          |       |             |          | 76    | 9         |           |         | 3'289                     | 3'289          |
| 2.2.2       | DT Back-end electronics            | L        |       |       | -        | _     |              | 499          |         |       |       | 545   |         | 112      |       |             |          | 45    | 3         |           |         | 1'609                     | 1'609          |
| 2.2.3       | OPTOLINKS<br>DT Florteerler        | -        |       | _     | -        |       |              | 11670        | 100     |       | _     | 283   |         |          |       |             |          | 100   | 8         |           |         | /84                       | 784            |
| 2.2         | Or detector electronics            |          |       |       | -        | -     |              | 1.6/0        | 100     | _     | _     | 2 300 | _       | 112      |       | 11          | 24       | 1 500 | -         | 3614      |         | 31000                     | 5'084          |
| 2.3.1       | Un-detector electronics and UTMBS  | -        |       | -     | -        | -     |              |              | -       | -     | -     |       |         | -        |       | 10          | /0       | ÷     | -         | 2014      | 007     | 2800                      | 2 690          |
| 2.3.2       | High Voltage Curters               | $\vdash$ |       |       | -        | -     |              |              | -       | -     | -     |       | _       | -        |       | 20          |          | +     | +         |           | 867     | 200                       | 300            |
| 2.3.5       | CSC Electronics                    |          |       |       |          |       |              |              |         |       | -     |       |         |          |       | 42          | 76       | ÷     |           | 2614      | 887     | 4'003                     | 2/785          |
| 2.4.1       | RE3/1 RE4/1 Chambers               | 73       |       | -     | 48       | 50    |              |              | _       |       | _     | 100   | 340     | 509      |       | 74          | 75       | Т     | -         | 1014      | 007     | 1'105                     | 1'170          |
| 2.4.2       | RE3/1 RE4/1 Front-end electronics  |          |       |       |          |       | 600          |              |         |       |       | 50    | 0.10    | 189      |       |             |          | t     | -         |           |         | 839                       | 749            |
| 2.4.3       | RE3/1 RE4/1 Power System           |          | -     |       | -        |       | 000          |              |         |       |       | 150   |         | 190      |       |             |          | t     | -         |           |         | 340                       | 335            |
| 2.4.4       | Back-end electronics               |          |       | 400   | -        |       |              |              |         |       | 1'390 |       |         |          |       |             |          | t     | -         |           |         | 1'790                     | 1'380          |
| 2.4         | RPC Upgrade Project                | 73       |       | 400   | 48       | 50    | 600          |              |         |       | 1'390 | 300   | 340     | 888      |       |             | 75       |       |           | 7         | 1       | 4'164                     | 3'634          |
| 2.5.2.1     | GE2/1 Chambers                     | 89       |       | 157   |          |       |              | 50           | 60      | 434   |       | 405   | 433     |          | 240   |             |          | Т     | 319       |           |         | 2'187                     | 2'002          |
| 2.5.2.2     | GE2/1 Front-end Electronics        |          | 148   | 1     |          |       |              |              |         |       |       | 170   |         |          |       |             |          | Т     |           |           |         | 318                       | 272            |
| 2.5.2.3     | GE2/1 DAQ and Back end electronics |          |       | 264   |          |       |              |              |         |       |       |       |         |          |       | 5           |          | Г     |           |           | 531     | 847                       | 884            |
| 2.5.2.4     | GE2/1 Power System                 |          | 452   |       |          | 50    |              |              |         |       |       | 435   |         |          |       |             |          |       |           |           |         | 937                       | 937            |
| 2.5.2       | GE2/1 Detector System              | 89       | 600   | 421   |          | 50    |              | 50           | 60      | 434   |       | 1'010 | 433     |          | 240   | 5           |          |       | 319       |           | 531     | 4'289                     | 4'095          |
| 2.5.3.1     | ME0 Chambers                       | 148      |       | 143   |          |       |              | 100          | 65      | 445   |       | 30    | 633     |          | 60    |             |          | Г     | 354       |           |         | 1'978                     | 1'732          |
| 2.5.3.2     | ME0 Front End Electronics          |          | 92    |       |          |       |              |              |         |       |       | 231   |         |          |       |             |          |       | 87        |           |         | 410                       | 411            |
| 2.5.3.3     | ME0 DAQ and Backend Electronics    |          |       | 186   |          |       |              |              |         |       |       |       |         |          |       |             |          |       |           |           | 721     | 907                       | 959            |
| 2.5.3.4     | ME0 Power System                   |          | 608   | 1     |          | - 50  |              |              |         |       |       | 479   |         |          |       |             |          |       |           | 3         |         | 1'137                     | 1'139          |
| 2.5.3       | ME0 Detector System                | 148      | 700   | 329   |          | 50    |              | 100          | 65      | 445   |       | 740   | 633     |          | 60    | 1.1         |          |       | 441       | and a set | 721     | 4'432                     | 4'241          |
| 2           | Grand Total                        | 310      | 1'300 | 1'150 | 48       | 150   | 600          | 1'820        | 225     | 879   | 1'390 | 4'350 | 1'406   | 1'000    | 300   | 47          | 151      | 1 500 | 760       | 2'614     | 2'139   | 22'570                    | 21'437         |

## ANNEX 4

Deliverables and Assigned Funding for the individual Items

by Funding Agency

(including Estimated Costs)



# JINR team participation in LS2 CSC upgrade

On-chamber electronics on MEx/1 chambers upgrade done in LS2 shutdown instead of initially planned LS3 due to the LS3 shutdown will be extremely busy



CSC upgrade infrastructure



### ME1/1 installation with Loading Machine 180 CSC chambers successfully refurbished, reinstalled and commissioned <sup>ch</sup>

<sup>₫</sup>140

108 130 88

ution

ME+1/1 Resolution per Chamber (SX5 Cosmics)

+ME11b, DCFEB-2013 (LS1)

ME11b, xDCFEB-2020 (LS2)

+ME11a, DCFEB-2013 (LS1)

ME11a, xDCFEB-2020 (LS2)



### Upgrade Workflow

LS2 CSC cosmic test data for both Endcaps are in good agreement





### CSC ageing study R&D at GIF++

#### Main goals of tests at Gamma Irradiation Facility GiF++ :

- 1. CSC Ageing study.
- 2. CSC characteristics degradation with the background rate increase study.
- 3. Study of methods for Malter current eliminating.



### 14 TBq Cs137 source (Eγ = 662 keV)

### Irradiation:

4 inner layers (L2-L5) have HV = on, I  $_{layer}$  ~300 $\mu A$  L1 and L6 lreference layers - (HV=0)

### Equivalent to 3×HL-LHC of L=3×3000 fb<sup>-1</sup>

the integrated charge to be: ME1/1 - 0.33 C/cm ME2/1(sect.1) - 0.24 C/cm

#### Will CSCs survive at HL-LHC of L<sub>int</sub>=3000 fb-1?



### Longevity tests- monitoring CSC performance:

- Dark rate/currents
- Relative currents
- Strip-strip resistance
- Test beam measurements:
- ✓ Efficiency
- ✓ Spatial resolution
- 🗸 Gas gain



23



### **Recent CSC ageing study results**



#### ME1/1 with the accumulated charge





#### No degradation observed

#### CSC spatial resolution vs GIF++ Source intensity for different values of accumulated charge



With the HL LHC conditions at L= 5x10<sup>34</sup> Hz/cm<sup>2</sup> the spatial resolution degradation: 10% for ME1/1 16% for ME2/1



### Malter currents at CMS and GIF++





#### spareME11



#### CMS p-p collisions:

One of the 6 CSC ME1/1 layers shows a current spike exceeding 30  $\mu$ A followed by a long-time discharge. The current persists even after the LHC beams are dumped. The other layers show stable currents around 3  $\mu$ A.

#### HV training of the Spare ME1/1 layer 2 (blue) at GIF++.

The current is produced by Cs-137 gamma source. As soon as the current disappeared, the voltage is raised manually by 5-10V. At some point Malter current disappears and no seen even at HV=3.0kV.



### **Upgrade Cost Summary**



- The CMS Phase II Upgrade Cost is 285 MCHF in terms of CORE value
- The Phase II Upgrade Common Fund is established at the level of 25'000'000 CHF (twenty-five million Swiss Francs)
- According to the Addendums to the Memorandum of Understanding for Collaboration in the Construction of the CMS Detector, JINR has following commitments in CORE (2020-2026):
- ✓ participation in the Highly Granularity Calorimeter (HGCal) Project with total contribution of 2.2 MCHF
- ✓ upgrade of the Endcap Muon system Cathode Strip Chambers (CSC) with total contribution of 76 kCHF (these obligations is nearly fulfilled, have to be accounted)

### The payments also needed for:

- ✓ contribution to Upgrade Common Funds of 289,855 kCHF in 2022-2026 (468.855 kCHF is in a total, 144.928 kCHF is already accounted for 2020-201)
- ✓ 179 kCHF of operation expenses on technical maintenance of the HGCal in 2022-2026 according M&O\_B

#### The R&D for Muon System are foreseen for study CSC performance at HL-LHC conditions



### Funding Requested for 2022–2026



Form No. 29

#### Estimated expenditures for the Project UPGRADE OF THE CMS DETECTOR

|    | Expenditure items                                               | Full cost, | 2022                      | 2023                      | 2024          | 2025          | 2026          |
|----|-----------------------------------------------------------------|------------|---------------------------|---------------------------|---------------|---------------|---------------|
|    |                                                                 | KΦ         | (1 <sup>st</sup><br>year) | (2 <sup>nd</sup><br>year) | (3rd<br>year) | (4th<br>year) | (5th<br>year) |
|    | Direct expenses for the Project                                 |            |                           |                           |               |               |               |
| 1. | Materials and Equipment                                         | 2407       | 940                       | 865                       | 590           | 7             | 5             |
| 2. | CMS Maintenance and<br>Operation                                | 507        | 98                        | 109                       | 118           | 130           | 52            |
| 3. | Travel allowance,<br>including:<br>a) non-rouble zone countries | 575        | 65                        | 119                       | 136           | 128           | 127           |
|    | b) rouble zone countries                                        |            |                           |                           |               |               |               |
|    | Total direct expenses                                           | 3489       | 1103                      | 1093                      | 844           | 265           | 184           |

Comments:

All the values include expenses on upgrade of the CMS detector systems in accordance with MoU, payments of Upgrade Common Funds, operation expenses on technical maintenance of the HGCal according M&O B, R&D for upgrade, visit expenses.

PROJECT LEADER

V.Yu. Karjavine

LABORATORY DIRECTOR

R. Lednicky

LABORATORY CHIEF ENGINEER-ECONOMIST

G.G. Volkova





# We ask VBLHEP Scientific Council to support prolongation of our Project aimed to Upgrade of the CMS Detectors ongoing activities for the LHC Phase 2 (HGCal and Muon System) for 2022-2026

Thank you for your attention!!!



CERNS

CMS-2020-010

#### Memorandum of Understanding (MoU) on participation of the Joint Institute for Nuclear Research (JINR) in the the Compact Muon Solenoid (CMS) Phase-2 High Granularity Calorimeter (HGCal) Project at CERN

According to the Annex 4 of the Addendum No. 14 to the Memorandum of Understanding (ref. CMS-MoU-2019-009), the Joint Institute for Nuclear Research (JINR) in Dubna, Russian Federation has committed to participate in the HGCal Project with total contribution of 2.2 MCHF. Within this project, JINR has agreed to provide CORE financing of 90'000 CHF (ninety thousand swiss francs) to the task 4.5.4 (Assembly Centre and Tooling).

Following the review of the production and assembly process, mutually done by JINR and CERN scientists, it has been decided that Tilemodule Assembly Centre facility, to be placed either in Dubna or in CERN, is no longer needed. JINR will instead provide financing of 90'000 CHF to the task 4.2.4 (Cassettes Assembly Centre and Tooling) and assume lead responsibility for sub-task 4.2.4.2 (Test/Burn-in Stands including CO2 cooling) at CERN. JINR Group will in addition participate in cassette activities and in detector assembly and commissioning at CERN.

With respect to Annex 3 of the above-mentioned Addendum 14, the JINR Group will participate in the following tasks using none-core funds in addition to 90'0000 CHF core funds defined in 4.2.4.2:

- design, construction, commissioning and operation of the dual use (CE-E and CE-H), multi-cassette cold-room test facility. This facility will be set up in 2021-22 at CERN SXA5 building at the Point 5 site in Cessy, France. The facility will be operated in 2022-25;
- 2) reception testing and diagnostics of CE-H cassettes arriving from the Fermi National Accelerator Laboratory (FNAL) in Batavia, USA to CERN. This activity will take place in the period 2022-25 at CERN Building SXA5 at the Point 5 site in Cessy, France;
- 3) assembly and commissioning of HGCal detectors, including installation of CE-H cassettes into absorber, integration of CE-H sections and cold-tests of fully assembled HGCal endcaps. These activities are scheduled to take place in the period 2023-26 at CERN Building SX5 at the Point 5 site in Cessy, France.

CMS COLLABORATION

CMS-2020-010

The expenses for the travel and staying at CERN for the JINR Group to carry out above mentioned tasks are under responsibilities of JINR. Other non-core funding for the above projects will be subject of further discussion between CMS and JINR.

In two copies:

Signed in Deebne

m 30 October 2020

Signed in Geneva, Switzerland

on 22 October 2020

For JINR Prof. Viktor Matveet Director of IINR

For CMS Collaboration

4 lin

Dr. Karl Gill CMS HGCal Project Manager

Mr. Andrzej Charkiewicz CMS Resources Manager



22 October 2020