Update on dielectron studies and new production

V. Riabov

Outline

- Details on background rejection cuts
- New production

DCA selections

- DCA_x,y,z selections → reject tracks not from the primary vertex (conversion, weak decays, secondary interactions etc.)
- DCA selections are p_T , rapidity and centrality dependent \rightarrow parameterization of the mean and width of DCA distributions vs. p_T , rapidity and centrality \rightarrow normalization \rightarrow apply n- σ cuts for selection of primary tracks
- Normalization of DCA is done using the inclusive sample of reconstructed charged particle tracks (mostly pions, composition changes with momentum and centrality)
 - \checkmark Tracks should pass the basic analysis cuts for single tracks (except for DCA)
- Problems:
 - ✓ DCA parameterization approach (background and signal functions, how differential, etc.)
 - ✓ Mean and width of DCA distributions depend on the track selection cuts (n-hits, vertex, rapidity etc.)
- Questions:
 - \checkmark How DCA for electrons is different from that for other hadrons or inclusive hadrons?
 - ✓ How much does the DCA cuts help to reject the photon conversion electrons?

DCA parameterization

- Followed the procedure described in the previous presentation
- DCA_x,y and DCA_z distributions are accumulated more differentially (7,500 bins):
 - ✓ 30 bins in η , -1.5 < η < 1.5
 - ✓ 10 centrality bins, 0 100%
 - ✓ 25 p_T bins, 0.05 2.55 GeV/c
- Number of bins and ranges are driven by available statistics
- DCA_xy and DCA_z distributions are fit to a sum of narrow Gaussian for signal + wide Gaussian for background), mean and width values are extracted for each η /centrality bin vs. p_T
- DCA_x,y,z values are normalized for n-sigma selections
- The DCA track selection cuts should depend on the analysis and optimized for better statistical significance and smaller systematic uncertainties

- DCA_x,y and DCA_z distributions (p_T integrated) for charged particles, pions, kaons, protons and electrons
- Distributions are normalized to have the same maximum
- $p_T \sim 100 \text{ MeV/c}$

- Inclusive distributions are dominated by pions
- Width of DCA distributions shows strong PID dependence for all particles
- Significant difference between inclusive(pions) and electron distributions
- Kaons and protons are hardly matched to the primary vertex

- DCA_x,y and DCA_z distributions (p_T integrated) for charged particles, pions, kaons, protons and electrons
- Distributions are normalized to have the same maximum
- $p_T \sim 200 \text{ MeV/c}$

- Inclusive distributions are dominated by pions
- Width of DCA distributions shows strong PID dependence for kaons and protons
- Small difference between inclusive(pions) and electron distributions

- DCA_x,y and DCA_z distributions (p_T integrated) for charged particles, pions, kaons, protons and electrons
- Distributions are normalized to have the same maximum
- $p_T \sim 500 \text{ MeV/c}$

- Inclusive distributions are dominated by pions
- Width of DCA distributions shows modest PID dependence for protons
- No difference difference between inclusive(pions) and electron distributions

• Width of DCA_x,y and DCA_z distributions vs. p_T for charged particles, pions and electrons

- All the differences between $e/\pi/K/p$ are at very low momentum (~25%)
- At $p_T > 0.4$ GeV/c there is no difference between particles (except for protons)
- Tighter DCA cuts give some preference to electron selection at low p_T (for primary particles)

DCA for primary and secondary electrons

• DCA_x,y vs. p_T for primary (left) and secondary (right) electrons

• DCA_z vs. p_T for primary (left) and secondary (right) electrons

- Different widths of DCA distributions for primary and secondary electrons, especially in x,y projections
- Tight DCA cuts reject secondary electrons (mostly from conversion)

DCA vs. radius, electrons

• Production radius of e⁺e⁻ pairs with different DCA_xyz cuts

- DCA cuts do not reject conversion at beam pipe
- DCA cuts reject most of conversion on the TPC vessels

Optimization of analysis cuts

- Criteria:
 - \checkmark larger statistical significance of signals \rightarrow smaller statistical uncertainties
 - ✓ higher S/B ratio → smaller systematic uncertainties from background normalization
- Signals:
 - ✓ LM region 0.2-0.6 GeV/ c^2
 - ✓ LVM: Omega, Phi
- Varied cuts:
 - $\checkmark\,$ electron DCA to PV within 1.5-3 σ
 - ✓ Dalitz cut within 0.1-0.2 GeV/ c^2
 - $\checkmark \sqrt{p_T^{e+} p_T^{e-}}$ cut within 0.25-0.4
- Questions: show differentially

DCA cut

- Criteria:
 - \checkmark larger statistical significance of signals \rightarrow smaller statistical uncertainties
 - ✓ higher S/B ratio → smaller systematic uncertainties from background normalization

DCA: 2 σ

DCA: 2.5 σ

DCA: 3 σ

- Efficiency and purity are quite sensitive to DCA selections
- However dielectron signals show only very weak dependence on the DCA cuts

Dalitz cut

- Criteria:
 - ✓ larger statistical significance of signals \rightarrow smaller statistical uncertainties
 - ✓ higher S/B ratio → smaller systematic uncertainties from background normalization

- A cut of M > 100 MeV/c² improves the S/B and signal significance
- Further improvements in S/B are at the expense of smaller statistical significance
- The cut is a source of systematic uncertainties, which are difficult to control and evaluate

 $p_T^{e+} p_T^{e-}$ cuts

- Criteria:
 - \checkmark larger statistical significance of signals \rightarrow smaller statistical uncertainties
 - ✓ higher S/B ratio → smaller systematic uncertainties from background normalization

No cut

$$\sqrt{p_T^{e+}p_T^{e-}} > 0.3$$

$$\sqrt{p_T^{e+} p_T^{e-}} > 0.4$$

- $\sqrt{p_T^{e+}p_T^{e-}}$ cut improves S/B
- Up to $\sqrt{p_T^{e+} p_T^{e-}} > 0.3$, signal significance is not affected
- Tighter cuts reduce statistical significance

M_{ee} (GeV/c²)

 $\sqrt{p_T^{e+}p_T^{e-}}$ > 0.3 cut, more details

• Ratio of e⁺e⁻ continuum, e⁺e⁻ from η , e⁺e⁻ from π^0 and e⁺e⁻ from conversion

• $\sqrt{p_T^{e+}p_T^{e-}} > 0.3$ cut rejects signal at low mass

• However, pairs with Dalitz and conversion electrons are rejected more effectively

 $\sqrt{p_T^{e+}p_T^{e-}}$ > 0.3 cut, more differentially

• $0 < p_T < 0.5 \text{ GeV/c}$

• $0.5 < p_T < 1.0 \text{ GeV/c}$

• $\sqrt{p_T^{e+}p_T^{e-}} > 0.3$ cut is very similar to $p_T^{e+} > 0.3$ and $p_T^{e-} > 0.3$ cuts

V. Riabov, PWG4-ECAL Meeting, 24.03.2021

 $\sqrt{p_T^{e+}p_T^{e-}}$ > 0.3 cut, more differentially

• $0 < p_T < 0.5 \text{ GeV/c}$

- Two cuts only look similar but have very different efficiency
- However both cuts reject low-mass pairs at low p_T

 $p_T^{e+} p_T^{e-} > 0.2 \text{ cut}$

• $0 < p_T < 0.5 \text{ GeV/c}$

• Looser cuts could be used depending on the background situation

New Monte Carlo production

- Request11: *PWG4 dielectrons*, 15M minbias BiBi@9.2
- The production has been finished a few days ago
- Aims at dielectron studies but good for most of other analyses
- Features (what's different compared to previous dielectron productions):
 - ✓ latest MpdRoot version with the updated materials, detector response and reconstruction algorithms
 - ✓ realistic dE/dx calculations with Geant-4
 - \checkmark dphi, dzed variables for better track-to-TOF matching
 - ✓ most probable first collision system, <u>BiBi@9.2</u>
 - ✓ high statistics, 15 M events
- Output data:
 - /eos/nica/mpd/sim/data/exp/dst-BiBi-09.2GeV-mp02-21-500ev/BiBi/09.2GeV-mb/UrQMD/BiBi-09.2GeV-mp02-21-500ev/
 - ✓ 30,000 DST files

dE/dx parameterization

- Selected tracks:
 - ✓ hits > 39
 - ✓ $|\eta| < 1$ ✓ $|DCA_x,y,z| < 3 \sigma$
- Parameterized log(dE/dx) vs. momentum for electrons and pions
- Red and blue bands show 2σ selections for e^{\pm} and π^{\pm}

V. Riabov, PWG4-ECAL Meeting, 02.02.2021

Track-to-TOF matching distributions vs. p_T

- Selected tracks:
 ✓ hits > 39
- Default track-to-TOF matching cut is |*distance*| < 7 cm
- ✓ |η| < 1
 ✓ |DCA_x,y,z| < 3 σ
- Split *distance* to dphi and dzed and then parameterized matching distributions for all charged tracks vs. p_T

- 2σ bands are shown with black lines
- Do not observed a significant charge dependence of $d\phi$
- Selection of matching cuts is analysis dependent

Beta parameterization

- 2σ bands are shown with red lines
- Very weak dependence of width on p_T
- Tail at $\beta > 1$ remains and is clearly seen

dE/dx with TOF selections

- Selected tracks:
 - \checkmark hits > 39
 - ✓ $|\eta| < 1$
 - ✓ $|DCA_x,y,z| < 3 \sigma$
 - ✓ Default matching

- Selected tracks:
 - \checkmark hits > 39
 - ✓ |η| < 1</p>
 - ✓ $|DCA_x,y,z| < 3 \sigma$
 - \checkmark 2 σ matching to TOF

- 2σ matching reduces background from wrong association of tracks and TOF hits
- Background remains anyway, including $\beta > 1$ tail
- Dashed lines show the cuts which improve separation of pions and electrons at the expense of lower efficiency

Efficiency and purity

- Selected tracks:
 - \checkmark hits > 39

✓ 2σ matching to TOF

- $\checkmark |\eta| < 1$
- ✓ $|DCA_x,y,z| \le 3 \sigma$

✓ $1-2\sigma$ TPC-eID ✓ 2σ TOF-eID

- Performance is comparable to that in previous studies
- Next step is to look at dielectrons ...

BACKUP

Conversions

- 10 M minbias BiBi@9.45 (UrMQD v.3.4) events
- Idea is to pair electron candidate tracks and then reject tracks that are consistent with $\gamma \rightarrow ee$
- Form pairs:
 - ✓ track #1 passes tight dielectron analysis selection cuts (n-hits > 39, DCA < 2σ ; |eta| < 1.0; p_T > 50 MeV/c; TPC-TOF 2σ eID + TPC π -ID 2σ veto)
 - ✓ track #2 passes loose e-ID cuts (n-hits > 20; |eta| < 2.5; $p_T > 50$ MeV/c; TPC 2 σ e-ID (no TOF) || TPC-TPF 2 σ e-ID
- Compare distributions for all pairs and for those from conversion:
 - \checkmark Chi2 for secondary vertex, distance between the tracks
 - \checkmark pointing angle
 - ✓ Mass_ee
 - \checkmark distance to primary vertex
 - \checkmark many more, but all variables are correlated

Chi2, DCA and PA distributions

• 10 M minbias BiBi@9.45 (UrMQD v.3.4) events

• p_T-dependent selections for Chi2, DCA and pointing angle are set to accept 95% of conversion pairs

Mass vs. distance distributions

• 10 M minbias BiBi@9.45 (UrMQD v.3.4) events

Mass vs. SV-PV distance

- Tight DCA cut for track#1 rejects conversions at large angles
- Selections for conversion pairs:
 - ✓ SV-PV distance > 2 cm
 - \checkmark Mass_ee < 65 MeV/c²
 - \checkmark select two bands for the beam pipe and TPC vessels

Mass vs SV-PV distance

Once find a loosely e-IDed track which is consistent with a conversion partner for the tightly e-IDed track → both tracks are tagged as a conversion pair candidates and then rejected from the analysis
 V. Riabov, PWG4-ECAL Meeting, 24,03,2021

Conversion rejection, results

• 10 M minbias BiBi@9.45 (UrMQD v.3.4) events

- Rejection of conversion candidates improves S/B by a factor of 2
- Signal significance also improves
- Mild improvements with respect to previous variant of conversion rejection for S/B
- New variant of conversion rejection is a new default variant

S/B, different cuts: asymmetry

• $\sqrt{p_T^{e^-} p_T^{e^+}} > 0.3$: a low- p_T electron must pair only with a high- p_T electron

- The cut rejects ~ 50% of the total signal, 60% of e- η , 75% of e- π^0 and e-conversion pairs
- Redistribution of pairs for from different sources at low masses