

Reconstruction of simulated and experimental data in the Drift Chambers of the BM@N experiment

D. Baranov, V. Palichik, M. Patsyuk, <u>N. Voytishin</u> JINR

Alushta-2021 2021-06-10

Drift Chambers Reconstruction Chain

Some selected residuals [Measurement – segmentFit]

C beam, empty target, B = 1200A

MC and data residuals are in agreement for all coordinates

Angle values and resolution

C beam, empty target, B = 1200A

Coordinates values and beam width

Difference in slopes between DC1 & DC2

C beam, empty target, B = 1200A

MC slope difference distributions are adequate to SRC data

Difference in coordinates for matching DC1 with DC2

Smearing for MC coordinates is adequate to SRC data

C Beam momentum resolution estimation

C Beam, empty target, B = 1200A

Reconstruction Efficiency vs. MC hit probability

ION generator (single particle in event)

	dc1, %	dc2, %	dcGlobal, %
100% hit on layer probability	100	100	100
92% hit on layer probability	86.32	86.37	69.18

$^{12}C + p \rightarrow 2p + ^{10}B / ^{10}Be + (n / p)$

Dubna Cascade Model (DCM-QGSM)

Layer hit reconstruction probability	Particle type	dc1, %	dc2, %	dcGlobal, %
100% hit on layer probability	lons(¹² C, ¹⁰ B, ¹⁰ Be)	95.6	96.6	91.5
	p , e, π⁺, π⁻	96.1	98.3	91.3
92% hit on layer probability	lons(¹² C, ¹⁰ B, ¹⁰ Be)	81.7	82.9	67.7
	p , e, π⁺, π⁻	81.9	84.7	65.3

Feature. The probability that there is a detector response on layer corresponding to a particular MC point can be adjusted.

Implementation into bmnroot

🦊 GitLab Projects Groups Snip	opets Help
bmnroot	NICA > mnroot > Commits
✿ Project overview	dev v bmnroot / dch
Repository	23 Oct, 2020 4 commits
Files	Update BmnDchHitProducer.cxx Nikolay Voytishin authored 2 weeks ago
Commits	
Branches	BmnDchTrackFinder.cxx adjusted for reconstruction of MC and experimental data Nikolay Voytishin authored 2 weeks ago
Tags	BmnDchTrackFinder.h adjusted for reconstruction of MC and experimental data
Contributors	Nikolay Voytishin authored 2 weeks ago
Graph	BmnDchHitProducer.cxx adjusted MC hit reconstruction
Compare	Nikolay Voytishin authored 2 weeks ago
	22 Oct, 2020 1 commit
D Issues 29	adjusting simulation for DCH
11 Merge Requests 0	Nikolay Voytishin authored 2 weeks ago

Unified DCH tracking for SRC/BM@N/MC/EXP was implemented into bmnroot.

Conclusions

- Realistic response of DCH added in simulation procedure
- Residuals and segment parameters are in agreement between MC and data
- The differences for matching between two DCH chambers in slopes and coordinates are quite similar for MC and data
- Tracking unified for SRC/BM@N/MC/EXP
- The full reconstruction chain for Dift Chambers is available in *bmnroot* package.
- Detailed investigation of reconstruction efficiency and resolution adjustments is ongoing.

backup

Ar beam e.m. contaminated MC data vs. Ar data

Ar beam, empty target, B = 1250A

DCH1 reconstructed segments local coordinates

Remark. Cut on beam region applied in order for reconstruction to work properly

Difference in slopes for DC1 & DC2

MC slope difference distributions are adequate to Ar data

Difference in coordinates for matching DC1 with DC2

Smearing for MC coordinates is adequate to Ar data

15

Drift Chambers coordinate reconstruction on a layer

Drift Chambers Reconstruction & Performance

$$X = rac{V-U}{\sqrt{2}};$$

 $X = rac{V+U}{\sqrt{2}};$

- 4 double coordinate planes;
- wire angles 0°,90°,±45°;
- wire pitch 10 mm;
- Yout ± 1.35 m, Xout ± 1.35 m
- $R_hole = 10 \text{ cm};$
- 2048 wires per chamber.

MCHit -> smeared SimHit

2 RecHits are obtained from the smeared SimHit