

Study of crystal and magnetic structure of spinel ferrites under high pressure

<u>N.M. Belozerova</u>, D.P. Kozlenko, S.E. Kichanov, E.V. Lukin and B.N. Savenko

Plan

1. What are complex oxides of iron?

- Ferrites are perspective compounds
- Brief description of structure and physical properties of complex oxides of iron

2. Caring out an experiment

- Advantages of neutron diffraction.
- Diffractometer DN-6 and additional equipment

3. Experimental results

- \bullet Crystal and magnetic structure of $Zn_{0.3}Cu_{0.7}Fe_{1.5}Ga_{0.5}O_4$ in wide temperature range
- \bullet Crystal and magnetic structure of $Zn_{0.3}Cu_{0.7}Fe_{1.5}Ga_{0.5}O_4$ in wide pressure range

Summary

Complex iron oxides applications

- ✓ Significant saturation magnetization
- ✓ High electrical resistivity
- ✓ Low electrical losses
- ✓ High chemical stability

Structure and properties of complex iron oxides

The spinel structure (AB_2O_4) is represented by the densest face-centered cubic lattice. Metal cations are distributed between two crystallographic positions: **tetrahedral** (A-site) and octahedral (B-site).

The magnetic properties of spinel ferrites is forming by the exchange interaction between the electrons of the ions in the A and B sublattices. Usually, the A - B interaction is the strongest. The A - A interaction is almost ten times weaker, and the B - B interaction is the weakest. The dominant interaction A - B leads to ferrimagnetic ordering.

Experimental method: Neutron Diffraction

- Neutron is **sensitivity to the light atoms** such as oxygen. It is give as opportunity to determine location of oxygen with precision.
- Another advantage of the neutron is **sensitivity to the magnetic structure** and dynamics of the magnetic substance.
- An important is the **high penetrating power of neutrons**, which gives opportunities for working with highpressure cells and devices for changing the temperature on the sample.

Experimental method: Neutron diffractometer DN-6

Experimental methods: High pressure cells

Maximum pressure is 8 GPa

Crystal and magnetic structure of ferrite $Zn_{0.3}Cu_{0.7}Fe_{1.5}Ga_{0.5}O_4$ in wide temperature range

Unit cell parameters			
a, Å		8.331(3)	
Atomic occupations			
A site:	Zn	0.30(1)	
	Fe	0.68(3)	
B site:	Cu	0.70(1)	
	Fe	0.82(2)	
	Ga	0.50(1)	

Magnetic moment		
T=300 K		
M_A, μ_B	4.2(4)	
$M_B^{},\mu_B^{}$	2.3(2)	
Curie temperature		
Т, К	395	

Crystal and magnetic structure of ferrite Zn_{0.3}Cu_{0.7}Fe_{1.5}Ga_{0.5}O₄ in wide pressure range

Curie temperature (P = 0 GPa)		
Т, К	395	
Curie temperature (P > 4 GPa)		
Т, К	300	

Summary

- **1. Crystal structure** of ferrite Zn_{0.3}Cu_{0.7}Fe_{1.5}Ga_{0.5}O₄ presented by the normal spinel cubic structure with space group Fd-3m, which **remains stable** in all studied temperature and pressure range. The most important parameters of crystal structure were obtained.
- 2. By increasing the temperature and the pressure, a **gradual suppression of the magnetic moments** of iron ions in both A and B crystallographic sites was observed. This effect corresponds to a **magnetic phase transition** from the ferrimagnetic state to paramagnetic one.
- 3. At pressures above 4 GPa, a suppression of ferrimagnetic phase, characterized by rapid decrease of the Curie temperature by about 95 K with a pressure coefficient $dT_C/dP = -19$ K/GPa occur.

Thank you for attention!

E-mail:

nmbelozerova@jinr.ru

Used article:

Kozlenko D.P., Belozerova N.M. et al. Neutron diffraction study of the pressure and temperature dependence of the crystal and magnetic structures of $Zn_{0.3}Cu_{0.7}Fe_{1.5}Ga_{0.5}O_4$ polycrystalline ferrite// Journal of Magnetism and Magnetic Materials. – 2018. – C. 44-48.

Journal of Magnetism and Magnetic Materials 449 (2018) 44-48

Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Research articles

Neutron diffraction study of the pressure and temperature dependence of the crystal and magnetic structures of $Zn_{0.3}Cu_{0.7}Fe_{1.5}Ga_{0.5}O_4$ polycrystalline ferrite

D.P. Kozlenko^a, N.M. Belozerova^{a,*}, S.S. Ata-Allah^b, S.E. Kichanov^a, M. Yehia^b, A. Hashhash^b, E.V. Lukin^a, B.N. Savenko^a