Investigation of shape coexistence in ⁹⁴Mo, ⁹⁶Mo, ⁹⁸Mo and ¹⁰⁰Mo based on a two-dimensional model with the Bohr Hamiltonian

<u>Mardyban M.A.,</u> Kolganova E.A., Jolos R.V., Sazonov D.A., Shneidman T.M.

BLTP JINR 2021

Problem model

$$R(\theta,\varphi) = R_0 \left[1 + \sum_{\lambda=1}^{\lambda} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}^* Y_{\lambda\mu}(\theta,\varphi) \right]$$

 λ =2 (quadrupole); μ =-2,-1,0,1,2

$$\alpha_{21} = \alpha_{2-1} = 0, \quad \alpha_{22} = \alpha_{2-2}$$

 $\alpha_{20} = \beta \cos \gamma, \quad \alpha_{22} = \frac{1}{\sqrt{2}} \beta \sin \gamma$

Nucleus shapes

 New experimental data: C. Kremer et al. "First Measurement of Collectivity of Coexisting Shapes Based on Type II Shell Evolution: The Case of ⁹⁶Zr" Phys. Rev. Lett. 117, 172503 (2016)

Bohr Hamiltonian

The collective quadrupole Bohr Hamiltonian can take the form:

$$H = -\frac{\hbar^2}{2B_0} \frac{1}{\sqrt{\omega r}} \frac{1}{\beta^4} \frac{\partial}{\partial \beta} \beta^4 \sqrt{\frac{r}{\omega}} b_{\beta\beta} \frac{\partial}{\partial \beta} + \hat{T}_{\beta\gamma} + \hat{T}_{\gamma} + \frac{\hbar^2}{2B_0} \sum_k \frac{\hat{I}_k^2}{\Im_k} + V(\beta, \gamma)$$

$$w = b_{\beta\beta}b_{\gamma\gamma} - b_{\beta\gamma}^2, \quad r = b_1b_2b_3, \quad \Im_{\kappa} = 4b_{\kappa}\beta^2\sin^2(\gamma - \frac{2\kappa\pi}{3}).$$

The parameter B_0 is the overall dimensional scaling factor for the components of the tensor of inertia. Coefficients $b_{\beta\beta} b_{\gamma\gamma}$ and $b_{\beta\gamma}$ are dimensionless coefficients of inertia for β - and γ -oscillations. Schrödinger equation that will be used to analyze the phenomenon of coexistence of forms:

Two-dimensional:

$$\left(-\frac{\hbar^2}{2B_0}\left[\frac{1}{\beta^4}\frac{\partial}{\partial\beta}\beta^4\frac{\partial}{\partial\beta}+\frac{1}{\beta^2\sin 3\gamma}\frac{\partial}{\partial\gamma}\sin 3\gamma\frac{\partial}{\partial\gamma}-\frac{1}{4}\sum_i\frac{I_i^2}{\beta^2\sin^2\left(\gamma-\frac{2\pi i}{3}\right)}\right]+V(\beta,\gamma)\right)\Psi=E\Psi$$

One-dimensional:

$$\left(-\frac{\hbar^2}{2B_0}\left[\frac{d^2}{d\beta^2} - \frac{1}{4\tau}\frac{d^2\tau}{d\beta^2} + \frac{3}{16}\left(\frac{1}{\tau}\frac{d\tau}{d\beta}\right)^2 - \frac{\hat{\vec{I^2}} - \hat{I}_3^2}{3b_{rot}\beta^2}\right] + V(\beta)\right)\Psi = E\Psi$$

E2 transition

M1 transition

 $\mathsf{B}(\mathsf{E2}; 2_1^+ \to 0_1^+) = \frac{1}{5} \sum_{\mu} |< 2_1^+ |Q_{2\mu}| 0_1^+ > |^2$

B(M1;
$$2_2^+ \rightarrow 2_1^+$$
) = $\mu_N^2 \frac{9}{2\pi} |< 2_2^+ |gR(\beta)| 2_1^+ > |^2$

One-dimensional model

calculation

Potential energy V(β), calculated energies and wave functions for ⁹⁴Mo

Two-dimensional model

Calculation results for ⁹⁴Mo

Calculation results for ⁹⁶Mo

Energies and transitions	Experimental	One-dimensional	Two-dimensional	Energies and transitions	Experimental	One-dimensional	Two-dimensional
$E(0_2^+)$	1741	1741	1377	$E(0_{2}^{+})$	1148	1148	1148
$E(2_1^+)$	871	835	857	$E(2_{1}^{+})$	778	881	778
$E(2_2^+)$	1864	1949	1631	$E(2_{2}^{+})$	1498	1788	1446
$E(2_3^+)$	2067	2875	2301	$B(E2; 2^+_1 \to 0^+_1)$	20.7	15.4	14.4
$B(E2; 2^+_1 \to 0^+_1)$	16	9	13	$B(E2; 0_2^+ \to 2_1^+)$	51	30.7	59
$B(E2; 2_2^+ \to 2_1^+)$	28	0.9	29	$B(E2; 2_2^+ \to 2_1^+)$	16.4	5.3	32
$B(E2;2^+_2\rightarrow 0^+_1)$	0.4	0.004	0.13	$B(E2; 2^+_2 \to 0^+_1)$	1.1	0.86	0.36
-	-	$\chi^2_E = 175$	$\chi^2_E = 30$	-	-	$\chi^2_E = 178$	$\chi_E^2 = 26$
-	-	$\chi^2_{B(E2)} = 11.9$	$\chi^2_{B(E2)} = 9.3$	-	-	$\chi^2_{B(E2)} = 11.8$	$\chi^2_{B(E2)} = 9.27$

Calculation results for ⁹⁸Mo

Calculation	results	for	¹⁰⁰ Mo
-------------	---------	-----	-------------------

Energies and transitions	Experimental	Two-dimensional
$E(0_2^+)$	735	735
$E(2_1^+)$	787	795
$E(2_2^+)$	1432	1462
$E(2^+_3)$	1759	1796
$B(E2;2^+_1\rightarrow 0^+_1)$	20.1	12
$B(E2;2^+_1 \rightarrow 0^+_2)$	9.8	9.7
$B(E2; 2_2^+ \to 2_1^+)$	48	24
$B(E2;2^+_2\rightarrow 0^+_1)$	1.02	0.26
$B(E2;2^+_2\rightarrow 0^+_2)$	2.3	2.9
-	-	$\chi^2_E=14.6$
-	-	$\chi^2_{B(E2)} = 11.3$

Energies and transitions	$\mathbf{Experimental}$	Two-dimensional
$E(0_2^+)$	695	695
$E(2_1^+)$	535	512
$E(2_2^+)$	1063	1072
$E(2^+_3)$	1463	1499
$E(4^+_1)$	1136	1106
$B(E2;2^+_1\rightarrow 0^+_1)$	37.6	16.7
$B(E2;0^+_2 \rightarrow 2^+_1)$	89	44
$B(E2;2^+_2\rightarrow 0^+_2)$	5.7	2.2
$B(E2;2^+_2 \rightarrow 2^+_1)$	52	28
$B(E2;2^+_2\rightarrow 0^+_1)$	0.62	0.42
$B(E2;4^+_1\rightarrow 2^+_1)$	69	36.7
$B(E2;2^+_3\to 4^+_1)$	36	10
$B(E2;2^+_3\rightarrow 0^+_2)$	15	13
	-	$\chi^2_E = 21.6$
-	-	$\chi^2_{B(E2)} = 24.5$

Comparison of potential surface

Conclusion

- The used model makes it possible to predict the probabilities of E2 transitions
- The obtained energies and transition probabilities of low-lying collective states are in good agreement with experiment

The main results are included in the articles:

D. A. Sazonov et al. Phys. Rev. C 99, 031304 (R) - (2019) M.A. Mardyban et al. SNFP №6, 1960203 (2019)

Thank you for your attention!