

Study of the interaction trigger for Au + Au collisions in BM@N experiment

Conference "Alushta-2021"

Content:

Target Area Detector Performance :

- > Target area detectors
- Background conditions
- Efficiency of triggering Au+Au collisions
- > Centrality selection with BD and SiD triggers

Interaction Trigger Concept:

- ➢ Beam Trigger (BT)
- Min. Bias Trigger (MBT)
- > Centrality Trigger (CCT)

Forward Detector Performance:

- > Fragment Detector
- Forward Hadron Calorimeter

Introduction

BM @N

FD

CSC

ZDC

THE TRIGGER DETECTOR SYSTEM CONSISTS OF:

Schematic view of the BM@N set up

CSC.

ECAL .

CSC

CSC 🖬

ToF-700

ToF-400

• The fast interaction trigger is based on information coming from the target area and forward detectors and is used for effective selection of collision events in the BM@N target.

GEM

• The detector and interaction trigger performance for Au + Au collisions at energy of 4 A GeV were studied by Monte-Carlo simulation with a code DCM-QGSM + GEANT4.

Target Area Detector Performance

- The BM@N target area with multichannel detectors Barrel Detector (BD) and Silicon Detector (SiD) is schematically shown in figure. The Au target with a thickness of 300 µm is placed inside the BD at a distance of 50 mm from the end of BD.
- The target area is located inside the BM@N magnet with a field of B = 0.9 T

Background conditions

- Background conditions were studied by Monte-Carlo simulation with a code DCM-QGSM + GEANT4.
- The δ electron background produced by Au ions in the target can make an essential contribution to the number of fired channels in BD and SiD detectors.

Efficiency of triggering Au+Au collisions

- Target Area Detector performance is evaluated with heavy ion collisions simulation data.
- The total granularity of the target area detectors is 40 + 64 = 104 channels.
- The threshold conditions for suppression of the δ -electron background:
 - 18 channels in the SiD, 6 channels in the BD.

• With this condition the efficiency is 100% for central and semi-central Au+Au collisions for both the individual detectors and sum of the detector responses.

Centrality selection with BD and SiD triggers

• Background from δ –electrons limits our ability to organize Min. Bias trigger with multichannel detectors (BD and SiD).

Fragment Detector (FD)

• Fragment Detector (FD) with transverse dimensions 160x160 mm² will be placed after the vacuum pipe in front of the calorimeter (FHCal).

- The amplitude of the summed signal from the FD can be used:
 - for vetoing non-interaction events;
 - for generating a trigger on central and semi-central collisions;
 - for additional offline characterization of peripheral collisions.

Calculation of the Cherenkov light yield from Au-ion

Forward hadron calorimeter (FHCal)

- In future BM@N runs the new FHCal will replace the ZDC at the end of the beam line at a distance of 9 m from the target.
- The FHCal has a hole in the beam area, and consists of two types of modules for inner and outer regions with transverse size 150x150 mm² and 200x200 mm², respectively.
- In the current study, the MC simulations were used to explore the possibility to include the signals from the FHCal in the trigger.

Interaction Trigger Concept

Trigger type	Trigger logic
Beam Trigger (BT)	$BT = BC1 * VC_{veto} * BC2$
Min. Bias Trigger (MBT)	MBT = BT * FD _{veto} * FHCal
Centrality Trigger 1 (CCT1)	CCT1 = MBT * BD(low) * SiD(low)
Centrality Trigger 2 (CCT2)	CCT2 = MBT * BD(high) * SiD(high)
No Interaction Trigger (NIT)	NIT = BT * FD _{Au-ion} * FHCal _{veto}

35 40 N [channels]

30

