

Изучение процесса pn→{pp}_sπ вблизи порога с образованием ¹S₀ протонных пар в поляризационном эксперименте на установке ANKE-COSY

В.В. Шмакова

Дубна, 3 февраля 2017

- Постановка задачи
- Установка
- Эксперимент с поляризованным протонным пучком, pd \rightarrow {pp}_s π ⁻p_{spec} $d\sigma/d\Omega$, A_y ∂ ля pn \rightarrow {pp}_s π ⁻
- Эксперимент с двойной поляризацией, $dp \to \{pp\}_{s}\pi^{-}p_{spec}$ $d\sigma/d\Omega, A_{y}, A_{x,x} \quad \partial Ля \ pn \to \{pp\}_{s}\pi^{-}$ $A_{x,x'}, A_{y,y} \quad \partial Ля \ pn \to d\pi^{0}$
- Результаты
- Заключение

Киральная теория

- 🔀 Киральная теория эффективная теория КХД
- Руководящий принцип спонтанно нарушенная киральная симметрия
 разложение по теории возмущений
- 🔀 Эффективные степени свободы: пионы, нуклоны
- Ж Малый параметр разложения: Q/Λ_χ, Q~m_π, Λ_χ~1 ГэВ
- Структура операторов взаимодействия диктуется киральной симметрией, сила взаимодействия определяетя параметрами теории

их необходимо извлекать из экспериментальных данных

Константа d определяет силу контактного члена (NN)³π

переход NN пары: ${}^3S_1 \leftrightarrow {}^1S_1$, р-волновой π

- \rightarrow Одинакова для NN \rightarrow NN π , μ -d \rightarrow nnv, pp \rightarrow de-v, ...
- ✓ d с большой ошибкой для распада ³H, ожидается MuSan → проверка самосогласованности теоретического подхода
- imes Чистый доступ к константе d в процессе $pn \rightarrow \{pp\}_s \pi^-$ вблизи порога

Разложение по спиновым амплитудам

- У Два протона в конечном состоянии преимущественно находятся в ¹S₀ состоянии.
- > Спиновая структура pn→{pp}_sπ⁻: $\frac{1}{2}+\frac{1}{2}+\rightarrow 0+0-$
- 🔀 Только 2 спиновые амплитуды

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \\ 0 \end{pmatrix}_{0} = \frac{k}{4p} (|A|^{2} + |B|^{2} + 2Re[AB^{*}]\cos\theta_{\pi}),$$

$$A_{y}^{P} \left(\frac{d\sigma}{d\Omega} \\ 0 \end{pmatrix}_{0} = \frac{k}{4p} (2Im[AB^{*}]\sin\theta_{\pi}),$$

$$A_{x,x} \left(\frac{d\sigma}{d\Omega} \\ 0 \end{pmatrix}_{0} = \frac{k}{4p} (|A|^{2} + |B|^{2}\cos2\theta_{\pi} + 2Re[AB^{*}]\cos\theta_{\pi}),$$

$$A_{x,z} \left(\frac{d\sigma}{d\Omega} \\ 0 \end{pmatrix}_{0} = -\frac{k}{4p} (2|B|^{2}\sin\theta_{\pi}\cos\theta_{\pi} + 2Re[AB^{*}]\sin\theta_{\pi}),$$

$$A_{y}^{Q} = A_{y}^{P}, A_{y,y} = 1, A_{z,z} = A_{x,x}, A_{z,x} = A_{x,z}.$$

 $\mathcal{M} = \mathcal{S} \cdot (A\hat{p} + B\hat{k})$

Uzikov, Y.N. Phys. Atom. Nuclei (2014) 77: 646.

Цель работы – получить данные для парциальноволнового анализа и выделения р-волновых амплитуд

Существующие данные для pn→{pp}_sπ⁻

Ускоритель COSY (Юлих, Германия): пучки поляризованных протонов и дейтронов в импульсных пределах 600-3700 МэВ/с

Спектрометр ANKE с внутренней мишенью позволяет регистрировать:

- Быстрые положительно и отрицательно заряженные частицы вылетающие вперед в переднем детекторе, детекторах положительных частиц и отрицательных частиц (FD, PD, ND)
- Медленные положительно заряженные частицы в вершинном детекторе (STT)

Мишени:

- Кластерная дейтеривая мишень
- Внутренняя поляризованная (Н) мишень с накопительной ячейкой

Методы идентификации частиц

Идентификация частиц по разности времён пролёта

Идентификация частиц в STT

Потери энергии в первом и втором слоях детектора STT:

7

Эксперимент: $d\sigma/d\Omega$, $A_v^{\ p} \partial_{\pi} \overrightarrow{p} d \rightarrow \{pp\}_s \pi^- + p_{spec}$

Светимость, поляризация по $\vec{p}n \rightarrow d\pi^0$

$$d\sigma/d\Omega(pn \to d\pi^0) = 1/2 \ d\sigma/d\Omega(pp \to d\pi^+) A_y(pn \to d\pi^0) = A_y(pp \to d\pi^+).$$

<u>Фазовый анализ SAID</u> <u>http://gwdac.phys.gwu.edu.</u>

Интегральная светимость

$$L = (2312 \pm 110) nb^{-1}$$

Результаты: d σ /d Ω и A_v для pn→{pp}_s π ⁻

S.Dymov, V. Shmakova et al., , Phys. Lett. B 712, 375 (2012)

Измерения: $A_{x,x}$ и $A_{y,y}$ для $np \rightarrow \{pp\}_s \pi^-$

Поляризованная мишень

Источник атомарных пучков, накопительная ячейка

- Плотность мишени с ячейкой d₁=1.34 х 10¹³ см⁻²
- Материал ячейки: 25 мкм AI + 5 мкм тефлона
 - был главным источником фона

Измерения: $\overrightarrow{dp} \rightarrow p_{sp} \{pp\}_{s} \pi^{-}$

Полученные А_у и форма сечения процесса согласуются с данными, полученными в эксперименте с одиночной поляризацией!

S. Dymov, V. Shmakova et al., PRC 88, 014001 (2013)

Результаты: А_{х,х} и А_{у,у}

S. Dymov, V. Shmakova et al., PRC 88, 014001 (2013)

Дополнительные результаты: А_{х,х} и А_{у,у} для

$np \to d\pi^0$

- d и p_{sp} регистрировались в Fd
- Идентификация частиц по разнице времен пролета
- Т_{spec} < 6 МэВ
- Идентификация процесса $dp \rightarrow dp_{sp}X$ по недостающей массе $M_{x}(dp)$

V. Shmakova et al., PLB 726 (2013) 637

Парциально-волновой анализ данных

$$\begin{array}{ll} \mathbf{I=1} & pp \to \{pp\}_{s}\pi^{0} \quad {}^{3}P_{0} \to {}^{1}S_{0}s & ({}^{3}P_{2} - {}^{3}F_{2}) \to {}^{1}S_{0}d: \\ \mathbf{I=0,1} & np \to \{pp\}_{s}\pi^{-} + ({}^{3}S_{1} - {}^{3}D_{1}) \to {}^{1}S_{0}p: \end{array}$$

 $d\sigma/d\Omega$, A_y и $A_{x,x}$ для $np \rightarrow \{pp\}_s \pi^$ $d\sigma/d\Omega$, A_y для $pp \rightarrow \{pp\}_s \pi^0$ (D.Tsirkov et al., Phys. Lett. B 712, 370 (2012))

 $M_{\rm s}^{P}$, M_{d}^{P} , M_{d}^{F} M_{p}^{S}, M_{p}^{D}

Amplitude	Real	Imaginary	$\mathrm{Im/Re}$
Solution 1: $\chi^2 / ndf = 101/82$			
M_s^P	53.4 ± 1.0	-14.1 ± 0.3	
M_d^P	-25.9 ± 1.4	-8.4 ± 0.4	
M_d^F	-1.5 ± 2.3	0.0 ± 0.0	
M_p^S	-37.5 ± 1.7	16.5 ± 1.9	-0.44 ± 0.06
M_p^D	-93.1 ± 6.5	122.7 ± 4.4	-1.32 ± 0.11
Solution 2: $\chi^2 / ndf = 103/82$			
M_s^P	52.7 ± 1.0	-13.9 ± 0.3	
M_d^P	-28.9 ± 1.6	-9.4 ± 0.5	
M_d^F	3.4 ± 2.6	0.0 ± 0.0	
M_p^S	-63.7 ± 2.5	-1.3 ± 1.6	0.02 ± 0.03
M_p^D	-109.9 ± 4.2	52.9 ± 3.2	-0.48 ± 0.03
Solution 3: $\chi^2 / ndf = 106/82$			
M_s^P	50.9 ± 1.1	-13.4 ± 0.3	
M_d^P	-26.3 ± 1.5	-8.5 ± 0.5	
M_d^F	2.0 ± 2.5	0.0 ± 0.0	
M_p^S	-25.4 ± 1.9	-7.3 ± 1.5	0.20 ± 0.07
M_p^D	-172.2 ± 5.6	92.0 ± 6.2	-0.53 ± 0.04

Парциально-волновой анализ данных

Практическая ценность работы

- Получение экспериментальных данных, необходимых для теоретического анализа в рамках КПТ с целью определения контактного d-члена
- Результаты анализа показали необходимость измерения А_{х,z} и соответствующее предложение эксперимента было выдвинуто на COSY
- Результаты фазового анализа могут применяться в описании процесса *pd* → {*pp*}_s*n* с большой передачей импульса при 353 МэВ
- Разработанная методика измерений с накопительной ячейкой может применяться для получения других результатов
 - $dp \rightarrow \{pp\}_{s} n$ S. Dymov et al., Phys. Lett. B 744, 391 (2015)

 $dp \rightarrow {}^{3}He \pi^{0}$

S. Dymov et al., Phys. Lett. B 762, 102 (2016)

Заключение

- Измерены дифференциальное сечение d σ /d Ω и протонная анализирующая способность A_v для процесса pn \rightarrow {pp}_s π^-
- Сечение $d\sigma/d\Omega$ и протонная A_y^{p} и нейтронная A_y^{n} анализирующие способности определены для процесса np $\rightarrow {pp}_s \pi^-$
- Измерены спиновые корреляционные коэффициенты $A_{_{x,x}}$ и $A_{_{y,y}}$ для реакции np $\to \{pp\}_s \pi^-$ и np $\to d\pi^0$
- Комбинация всех полученных спиновых наблюдаемых и сечения позволила провести парциально-волновой анализ амплитуд реакции

Работа основана на публикациях:

- S. Dymov, V. Shmakova et al., Phys. Lett. B 712, 375 (2012),
- S. Dymov, V. Shmakova et al., Phys. Rev. C 88, 014001, (2013),
- V. Shmakova et al., Phys. Let. B 726, 4–5, 549-928, (2013),
- V. Shmakova, EPJ Web of Conferences 37, 01020 (2012),
- V. Shmakova, Physics of Elementary Particles and Atomic Nuclei 45, 117-119 (2014);

и доложена на международных конференциях:

- \times SPIN'2012,
- ℅ MESON'12,
- У заседаниях немецкого физического общества (ФРГ),
- *≻ рабочих совещаниях пользователей синхротрона COSY.*

<u>Предположения, сделанные в PWA:</u>

Несвязанная фаза М_s^Р фиксировалась по теореме Ватсона (связь фазы взаимодействия в начальном состоянии с упругим pp рассеянием)

 $\delta^{3}P_{0} = -14.8^{0}$

Пренебрежние параметром смешивания для связанного канала ³P₂-³F₂, фазы M^P_d, M^F_d фиксировались по теореме Ватсона

 $\delta^{3}P_{2} = 17.9^{\circ}, \ \delta^{3}F_{2} \sim 0^{\circ}$

<u>R. A. Arndt, I. I. Strakovsky, and R. L. Workman, Phys. Rev. C 62, 034005 (2000).</u>

Данные с неполяризованным пучком и/или мишенью

Получена поляризация для обоих направлений спина для пучка и мишени

$A_{_{v}}$ (пр→d $\pi^{_0}$) из SAID предсказаний

Поляризация мишени, Q=69 ± 2 %

Поляризация пучка, P=50 ± 3 %

Еще слайд