$\overline{\Lambda}$ reconstruction for the global polarization analysis

Raimbek Akhat

30.03.2021

Motivation

Hyperons can provide essential signatures of the hot and compressed baryonic matter

At NICA it is planned to study hyperons at MPD and <u>BM@N</u> setup.

In heavy ion collisions measurement of polarization strange hyperons allows to research properties of the QCD medium(vorticity, hydrodynamic helicity)

Motivation

Predicted¹ and observed² global polarization signals rise as the collision energy is reduced:

NICA energy range will provide new insight

Possible drop-off seen at in HADES³ experiment reduced:

1. O. Rogachevsky, A. Sorin, O. Teryaev, Phys.Rev. C 82, 054910 (2010

2. J. Adam et al. (STAR Collaboration), Phys. Rev. C 98, 014910 (2018)

3. F. Kornas for the HADES Collaboration, SQM 2019, Bari, Italy (11.06.19)

Data

- 1 400 000 events for 0-5 %, 5-10%, 10-40%, 40-100% centrality
- PHSD for generation
- Au Au collision at 7.7 GeV

$\overline{\Lambda} - \Lambda$ hyperon polarization

Polarization can be measured through weak decay:

 $\Lambda \to p + \pi^ \bar{\Lambda} \to \bar{p} + \pi^+$

Angular distribution:

 $\frac{dN}{d\cos\theta} = 1 + \alpha_{\Lambda} P_{\Lambda} \cos\theta^*$

 $\alpha_{\Lambda} = - \alpha_{\overline{\Lambda}} = 0.642$ decay parameter

Polarization can be measured: :

$$P_{\Lambda} = \frac{8}{\pi \alpha_{\Lambda}} \frac{1}{R_{EP}} \langle \sin(\Psi_{EP} - \theta^*) \rangle$$

$\overline{\Lambda} - \Lambda$ hyperon polarization analysis technique

parameters for selection:

$$\varpi_{1} = ln \frac{dca_{\pi}dca_{p}}{dca_{\Lambda}^{2} + dca_{V_{0}}^{2}}$$

All the parameters can also be normalized to their respective errors giving a set of χ^2

$$\varpi_2 = ln \frac{\sqrt{\chi_\pi^2 \chi_p^2}}{\chi_\Lambda^2 + \chi_{V_0}^2}$$

takes into account correlations of standard selection criteria taken in χ^2

Fitting function:f.Gauss for signal..Legendre polynoms (L_n) for=.background..Cut-off $< M_A > \pm 4\sigma$ -.DCA and track-separation cuts

 $f(x) = [0] \exp\left(\frac{\left(-0.5(x-[1])\right)^2}{[2]^2}\right) + [3](L_0 + [4]L_1 + [5]L_2$

Selection cuts for inv.mass Λ , $\overline{\Lambda}$

$\overline{\Lambda}$ hyperon

Centrality	Selection cut ϖ_2 at max.sign
0-5%	1.8
5-10%	1.6
10-40%	1.4
40-100%	0.8
0-100%	1.4

Λ hyperons

Centrality	Selection cut $arpi_2$ at max.sign
0-5%	2.4
5-10%	2.2
10-40%	1.8
40-100%	1.2
0-100%	2.0

Invariant masses Λ , $\overline{\Lambda}$

Invariant mass Λ for different centralities

Invariant mass $\overline{\Lambda}$ for different centralities

Number of $\overline{\Lambda} - \Lambda$ per event for different centralities

Number of $\overline{\Lambda}$ per event for different centralities

Number of $\overline{\Lambda}$ per event

	MC	∧ hype	erons		$\overline{\Lambda} - \Lambda$ hy
	Centrality	Ν	umber		
	0-5%	3	338 38	30	
	5-10%	2	851 10)2	
	10-40%	8	845 46	52	
	40-100%	2	306 01	16	
	0-100%	17	7 372 0	000	
		PID ∧	hype	erons	5
(Centrality	Numbe	er	Nur cut	mber with selection ω_2
C)-5%	62 107	649	3 27	73 203
5	5-10%	79 497	683	2 55	50 396
1	.0-40%	43 758	171	6 42	21 057
۷	0-100%	64 718	671	106	65 843
	Reconstru	icted Λ	hype	rons	5
	Centrality		Num	ber	
	0-5%		191 6	649	
	5-10%		162 8	863	
	10-40%		491 7	15	
	40-100%		109 3	312	

A A Hyperon's yield	$\overline{\Lambda}$ –	Λ	hyperons	yield
---------------------	------------------------	---	----------	-------

	MC $\overline{\Lambda}$ hyperons					
	Centrality		Numbe	r		
	0-5%		57 334			
	5-10%		46 308			
	10-40%		123 330	123 330		
	40-100%		19 935			
		PID $\overline{\Lambda}$ hy	yperons	5		
Centra	rality Number		Number with selection cut			
				ω ₂		
0-5%		1 367 1	59	108 132		
5-10%	8 823 384		34	81 623		
10-409	%	1 454 977		172 069		
40-100)%	87 294		26 507		
Reconstructed $\overline{\Lambda}$ hyp		hyper	ons			
	Centrality		Numb	er		
	0-5%		5861			
	5-10%		5000			
	10-40%		13698			
	40-100%		2132	1	3	

$\overline{\Lambda}$ hyperon yield vs p_T

Antilambda p_{τ} distribution

$\overline{\Lambda}$ hyperon yield vs rapidity

Factors affecting $\overline{\Lambda}$ reconstruction efficiency.

0-5 % centrality

Factor	Efficiency, %
Branching ratio: $\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	61.9
$ar{p}$ and π^+ at $ \eta $ <1.3	35.6
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.05 GeV/c	33.2
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.1 GeV/c	24.4
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.2 GeV/c	7.3
Reconstructed \bar{p} and π^+ at $ \eta $ <1.3	22.7
Maximum significance	10.4

5-10 % centrality

Factor	Efficiency, %
Branching ratio: $\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	62
$ar{p}$ and π^+ at $ \eta $ <1.3	35.7
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.05 GeV/c	33.2
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.1 GeV/c	24.7
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.2 GeV/c	7.3
Reconstructed $ar{p}$ and π^+ at $ \eta $ <1.3	22.9
Maximum significance	11

10-40 % centrality

-	
Factor	Efficiency, %
Branching ratio: $\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	62
$ar{p}$ and π^+ at $ \eta $ <1.3	35.8
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.05 GeV/c	33.3
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.1 GeV/c	24.4
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.2 GeV/c	7.1
Reconstructed \bar{p} and π^+ at $ \eta $ <1.3	23.1
Maximum significance	11.4

40-100 % centrality

Factor	Efficiency, %
Branching ratio: $\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	62.2
$ar{p}$ and π^+ at $ \eta $ <1.3	36.3
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.05 GeV/c	33.6
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.1 GeV/c	23.3
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.2 GeV/c	5.8
Reconstructed $ar{p}$ and π^+ at $ \eta $ <1.3	22.2
Maximum significance	10.9 16

Factors affecting $\overline{\Lambda}$ reconstruction efficiency.

AuAu 0-100 % centrality

Factor	Efficiency, %
Branching ratio: $\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	62
$ar{p}$ and π^+ at $ \eta $ <1.3	35.8
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.05 GeV/c	33.3
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.1 GeV/c	24.3
$ar{p}$ and π^+ at $ \eta $ <1.3 and p_T >0.2 GeV/c	7
Reconstructed \bar{p} and π^+ at $ \eta $ <1.3	22.9
Maximum significance	11.2

Reconstruction efficiency at maximum significance

Conclusion

- Comparison of the number of hyperons produced MC, PID, and reconstructed
- We show the preliminary invariant mass distribution for reconstructed hyperons for different sets of centrality.
- We got Factors affecting $\overline{\Lambda}$ reconstruction efficiency

Thank you for attention your attention