Muon Capture as a Probe of $0\nu\beta\beta$ Decay -Theoretical Aspect

Lotta Jokiniemi Contact: jokiniemi@ub.edu

University of Barcelona, Spain & University of Jyväskylä, Finland OMC4DBD General Collaboration Meeting

20.04.2020

1 Introduction

Ordinary Muon Capture as a Probe of $0
u\beta\beta$ Decay

3 Recent Studies

- Muon Capture on ¹⁰⁰Mo
- Muon Capture on the Daughter Nuclei of 0
 uetaeta-Decay Triplets
- Muon Capture on ¹⁰⁶Cd

Ongoing and Future Studies

- Muon Capture on Light Nuclei from First Principles
- 5 Summary

Introduction

- Current knowledge on particles and interactions between them is based on the Standard Model (SM)
- According to the SM, neutrinos are extremely weakly interacting, massless fermions
- However, recent solar neutrino experiments have proven that neutrinos have a non-zero mass
 - Standard model's perception of neutrinos is not accurate!
 - ...which is why we are interested in $0\nu\beta\beta$ decay

Two-Neutrino Double-Beta ($2\nu\beta\beta$) **Decay**

$${}^{A}_{Z} \mathbf{X}_{N} \rightarrow {}^{A}_{Z+2} \mathbf{Y}_{N-2} + 2e^{-} + 2\bar{\nu}_{e}$$

- May happen, when β -decay is not energetically allowed
- Allowed by the Standard Model
- Measured in pprox 10 isotopes
 - Half-lives of the order 10^{20} years or longer

Neutrinoless Double-Beta ($0\nu\beta\beta$) Decay

$$^{A}_{Z}\mathrm{X}_{N} \rightarrow^{A}_{Z+2}\mathrm{Y}_{N-2} + 2e^{-}$$

- Requires that the neutrino is a Majorana particle
- Violates the lepton-number conservation law by two

•
$$rac{1}{t_{1/2}^{(0
u)}}\propto |\langle m_{
u}
angle|^2$$

Difficulty of $0\nu\beta\beta$ Decay Searches

Challenging both experimentally ...

Sketchy energy spectrum of the emitted electrons in $\beta\beta$ decays ¹

$$t_{1/2}^{(2\nu)} \approx 10^{20} \text{ y}, \qquad t_{1/2}^{(0\nu)} \ge 10^{25} \text{ y}$$

ightarrow We need some detours!

¹cobra-experiment.com

²J. Engel and J. Menéndez, *Rep. Prog. Phys.* **80**, 046301 (2017), updated.

L. Jokiniemi (UB&JYU)

OMC vs $0\nu\beta\beta$ Decay

...and theoretically

Matrix elements of $0\nu\beta\beta$ decays ²

Introduction

2 Ordinary Muon Capture as a Probe of $0\nu\beta\beta$ Decay

3 Recent Studies

- Muon Capture on ¹⁰⁰Mo
- Muon Capture on the Daughter Nuclei of 0
 uetaeta-Decay Triplets
- Muon Capture on ¹⁰⁶Cd

Ongoing and Future Studies

- Muon Capture on Light Nuclei from First Principles
- 5 Summary

Ordinary Muon Capture as a Probe of $0\nu\beta\beta$ Decay

Ordinary Muon Capture (OMC)

$$\mu^- +^{\mathcal{A}}_{Z} \mathcal{X}(J_i^{\pi_i}) \to \nu_{\mu} +^{\mathcal{A}}_{Z-1} \mathcal{Y}(J_f^{\pi_f})$$

- Muon initially bound on an atomic orbit is captured by the nucleus
- Weak interaction process with momentum transfer $q \approx 100 \text{ MeV}/c^2$ due to the large mass of the captured muon, $m_\mu \approx 106 \text{ MeV}/c^2$
 - Similar to $0\nu\beta\beta$ decay!
- Large m_{μ} also allows transitions to all J^{π} states up to high energies
- Both the axial vector coupling g_A and the pseudoscalar coupling g_P are involved in the process

Advantages of OMC as a Probe of $0\nu\beta\beta$ Decay

- OMC leads to transitions to all J^π states up to high energies
 - We can access the intermediate states of 0νββ decay!
- Previously intermediate states probed by charge-exchange reactions

$$a_{z}a + A_{Z}X \rightarrow a_{z\pm 1}b + A_{Z\mp 1}Y,$$

where (a, b) can be (p, n), $(^{3}\text{He}, t)$, ...

• Ordinary muon capture (OMC)

$$\mu^- +^{\mathcal{A}}_{Z} X \to \nu_{\mu} +^{\mathcal{A}}_{Z-1} Y$$

serves as a complimentary way

 $\overset{\beta^-}{\underset{Z+1}{\overset{J^{\pi}}{\xrightarrow{}}}} \overset{OMC}{\underset{Z+1}{\overset{\beta^+}{\xrightarrow{}}}} \overset{\beta^+}{\underset{Z+1}{\overset{A}{\xrightarrow{}}}} \overset{OMC}{\underset{Z+2}{\overset{\beta^+}{\xrightarrow{}}}} \overset{\beta^+}{\underset{Z+2}{\overset{A}{\xrightarrow{}}}} \overset{OMC}{\underset{Z+2}{\overset{\beta^+}{\xrightarrow{}}}} \overset{\beta^+}{\underset{Z+2}{\overset{A}{\xrightarrow{}}}} \overset{OMC}{\underset{Z+2}{\overset{\beta^+}{\xrightarrow{}}}} \overset{OMC}{\underset{Z+2}{\overset{A^+}{\xrightarrow{}}}} \overset{OMC}{\underset{Z+2}{\overset{A^+}{\xrightarrow{}}} \overset{OMC}{\underset{Z+2}{\overset{A^+}{\xrightarrow{}}}} \overset{OMC}{\underset{Z+2}{\overset{A^+}{\xrightarrow{}}} \overset{OMC}{\underset{Z+2}{\overset{A^+}{\xrightarrow{}}}} \overset{OMC}{\underset{Z+2}{\overset{A^+}{\xrightarrow{}}} \overset{OMC}{\underset{Z+2}{\overset{Z+2}{\overset{Z+2}{\overset{Z+2}{\overset{Z+2}{\overset{Z+2}{\overset{Z+2}{\overset{Z+$

 $\beta\beta$ -decay triplet with charge-exchange reactions and ordinary muon captures to the intermediate states.

Advantages of OMC as a Probe of $0\nu\beta\beta$ Decay

• Both OMC and $0\nu\beta\beta$ decay involve couplings g_A and g_p :

$$W^{(OMC)} \propto |g_{\mathrm{A}}M_{\mathrm{A}} + g_{\mathrm{V}}M_{\mathrm{V}} + g_{\mathrm{P}}M_{\mathrm{P}}|^2$$

$$M^{(0\nu)} = M^{(0\nu)}_{
m GT}(g_{
m A}, g_{
m P}, g_{
m M}) - \left(\frac{g_{
m V}}{g_{
m A}}\right)^2 M^{(0\nu)}_{
m F}(g_{
m V}) + M^{(0\nu)}_{
m T}(g_{
m A}, g_{
m P}, g_{
m M}) \; ,$$

$$[t_{1/2}^{(0\nu)}]^{-1} = g_{\rm A}^4 G_{0\nu} |M^{(0\nu)}|^2 \langle m_{\nu} \rangle^2$$

• ...so if

- we know the involved nuclear structure precisely enough, and
- OMC rates to individual nuclear states can be measured

...we can probe $g_{\rm A}$ and $g_{\rm p}$ on the relevant momentum-exchange regime for $0\nu\beta\beta$ decay

Introduction

Ordinary Muon Capture as a Probe of $0 u\beta\beta$ Decay

3 Recent Studies

- Muon Capture on ¹⁰⁰Mo
- Muon Capture on the Daughter Nuclei of 0
 uetaeta-Decay Triplets
- Muon Capture on ¹⁰⁶Cd

Ongoing and Future Studies

- Muon Capture on Light Nuclei from First Principles
- 5 Summary

Introduction Ordinary Muon Capture as a Probe of 0v80 De Recent Studies

- Muon Capture on ¹⁰⁰Mo
- Muon Capture on the Daughter Nuclei of 0
 uetaeta-Decay Triplets
- Muon Capture on ¹⁰⁶Cd

Ongoing and Future Studies

- Muon Capture on Light Nuclei from First Principles
- 5 Summary

L. Jokiniemi (UB&JYU)

OMC vs $0\nu\beta\beta$ Decay

20.04.2020 14/33

Muon Capture on ¹⁰⁰Mo

$$\mu^- + {}^{100} \operatorname{Mo}(0^+_{g.s.}) \to \nu_{\mu} + {}^{100} \operatorname{Nb}(J^{\pi}_f)$$

 The OMC strength distribution in ¹⁰⁰Nb ⁶ was studied at the MuSIC beam channel at RCNP for the first time

⁶I.H. Hashim et al., Phys. Rev. C 97, 014617 (2018)

L. Jokiniemi (UB&JYU)

OMC vs $0\nu\beta\beta$ Decay

Muon Capture on ¹⁰⁰Mo - Theory vs. Exp.

- We computed the OMC strength spectrum in ¹⁰⁰Nb based on the Morita-Fujii formalism ⁷
- We adjusted the *g_{ph}* of pnQRPA to Gamow-Teller GR
- ...and compared the obtained spectrum with the observed one
 - The agreement is excellent!
- However, the total capture rate is too fast compared to the Primakoff estimate
 - We need a strongly quenched axial vector coupling g_A

⁷M. Morita, and A. Fujii, Phys. Rev. **118**, 606 (1960).
 ⁸LJ, J. Suhonen, H. Ejiri and I.H. Hashim, *Phys. Lett. B* **794**, 143 (2019)

L. Jokiniemi (UB&JYU)

OMC vs $0\nu\beta\beta$ Decay

Introduction

Ordinary Muon Capture as a Probe of $0
u\beta\beta$ Decay

3 Recent Studies

- Muon Capture on ¹⁰⁰Mo
- Muon Capture on the Daughter Nuclei of 0
 uetaeta-Decay Triplets
- Muon Capture on ¹⁰⁶Cd

Ongoing and Future Studies

- Muon Capture on Light Nuclei from First Principles
- 5 Summary

L. Jokiniemi (UB&JYU)

OMC vs $0\nu\beta\beta$ Decay

20.04.2020 17 / 33

$0\nu\beta\beta$ Decay vs. Muon Capture Matrix Elements

- We studied muon capture on the daughter nuclei of $\beta\beta$ -decay triplets: ⁷⁶Se, ⁸²Kr, ⁹⁶Mo, ¹⁰⁰Ru, ¹¹⁶Sn, ¹²⁸Xe, ¹³⁰Xe, and ¹³⁶Ba ⁹
- ...and compared the OMC matrix elements with the $0\nu\beta\beta$ matrix elements 10
- Since the *Q*-values are similar, states with same *E* are important for both decays
- Comparison against the experiments could shed light on 0νββ decay?

⁹LJ and J. Suhonen, *Phys. Rev. C* **100**, 014619 (2019) ¹⁰LJ and J. Suhonen, *Phys. Rev. C* **102**, 024303 (2020)

L. Jokiniemi (UB&JYU)

OMC vs $0\nu\beta\beta$ Decay

0
uetaeta decay and OMC NMEs in the A=128 triplet.

Introduction

Ordinary Muon Capture as a Probe of $0
u\beta\beta$ Decay

3 Recent Studies

- Muon Capture on ¹⁰⁰Mo
- Muon Capture on the Daughter Nuclei of 0
 uetaeta-Decay Triplets
- Muon Capture on ¹⁰⁶Cd
- Ongoing and Future Studies
 - Muon Capture on Light Nuclei from First Principles
- 5 Summary

L. Jokiniemi (UB&JYU)

OMC vs $0\nu\beta\beta$ Decay

20.04.2020 19/33

$0 u\beta^+\beta^+$ Decay vs OMC in ¹⁰⁶Cd

- We can also study OMC on the mother nucleus of a $0\nu\beta^+\beta^+$ decay triplet
- \bullet Recently, we studied the connection between $0\nu\beta^+\beta^+$ decay and OMC in $^{106}{\rm Cd}~^{11}$

¹¹LJ, J. Kotila and J. Suhonen, *Front. Phys.* **9**, 142 (2021) L. Jokiniemi (UB&JYU) OMC vs 02/88 Decay

20.04.2020 20 / 33

- There are similarities $0\nu\beta^+\beta^+$ -decay and OMC matrix elements especially for $J^{\pi}=3^+,3^-,4^-$
 - It remains to be seen how these similarities could be utilized
- How does the g_{pp} parameter affect the distributions?
- How about the bound-muon wave function?

 $0\nu\beta^+\beta^+$ decay and OMC NMEs in the ^{106}Cd triplet.

Dependence on the parameter $g_{\rm DD}$

- Normally, $g_{\rm pp}$ is adjusted to $2\nu\beta\beta$ -decay half-life
 - For $^{106}{\rm Cd},$ we only know that $t_{1/2}^{(2\nu)} \geq 1.7 \times 10^{21}~{\rm y}$
- However, adjusting $g_{\rm pp}$ shifts the OMC spectrum
 - We could adjust g_{pp} to OMC giant resonance, instead?

Dependence of OMC and $0\nu\beta\beta$ -decay matrix elements with $J^{\pi}=2^+$ on $g_{\rm pp}$

Dependence on Bound-Muon Wave Functions

 Solving the exact bound-muon wave function from Dirac equations instead of the Bethe-Salpeter (B-S) point-like-nucleus approximation?

Bound muon wave functions in ¹⁰⁶Cd.

Dependence of OMC matrix elements with $J^{\pi} = 2^+$ on different bound-muon wave functions

Introduction

2 Ordinary Muon Capture as a Probe of $0
u\beta\beta$ Decay

3 Recent Studies

- Muon Capture on ¹⁰⁰Mo
- Muon Capture on the Daughter Nuclei of $0\nu\beta\beta$ -Decay Triplets
- Muon Capture on ¹⁰⁶Cd

4 Ongoing and Future Studies

- Muon Capture on Light Nuclei from First Principles
- 5) Summary

L. Jokiniemi (UB&JYU)

OMC vs $0\nu\beta\beta$ Decay

20.04.2020 24 / 33

Ongoing and Future Studies

L. Jokiniemi (UB&JYU)

OMC vs $0\nu\beta\beta$ Decay

20.04.2020 25 / 33

- 2) Ordinary Muon Capture as a Probe of $0
 u\beta\beta$ Decay
- **3** Recent Studies
 - Muon Capture on ¹⁰⁰Mo
 - Muon Capture on the Daughter Nuclei of $0\nu\beta\beta$ -Decay Triplets
 - Muon Capture on ¹⁰⁶Cd

Ongoing and Future Studies

Muon Capture on Light Nuclei from First Principles

OMC vs $0\nu\beta\beta$ Decay

20.04.2020 26 / 33

Muon Capture on Light Nuclei from First Principles

- Recently, first *ab initio* solution to $g_{\rm A}$ quenching was proposed for β -decay ¹²
 - How about $g_{\rm A}$ quenching at high momentum transfer q pprox 100 MeV/c?
 - OMC could provide an answer!

Muon capture rates to low-lying states of ²⁴Na with different shell-model interactions.

L. Jokiniemi (UB&JYU)

OMC vs $0\nu\beta\beta$ Decay

¹²P. Gysbers *et al.*, *Nature Phys.* **15**, 428 (2019)

Muon Capture on ²⁴Mg from First Principles

- Muon capture in VS-IMSRG framework with T. Miyagi and J.D. Holt (TRIUMF)
- OMC rates to low-lying states of ²⁴Na in VS-IMSRG vs. shell-model (SM) frameworks
- With VS-IMSRG we can
 - include contributions outside the (*sd*) valence shell
 - include physics missing from the SM: 3*N* forces, two-body terms,...

Preliminary Results for Muon Capture on ²⁴Mg

- OMC matrix elements for $\begin{array}{l} \mu^- + \ ^{24}\mathrm{Mg}(0^+_{g.s.}) \rightarrow \nu_{\mu} + \ ^{24}\mathrm{Na}(1^+_1) \\ (\text{upper panel}), \text{ and} \\ \mu^- + \ ^{24}\mathrm{Mg}(0^+_{g.s.}) \rightarrow \nu_{\mu} + \ ^{24}\mathrm{Na}(1^+_2), \\ (\text{lower panel}) \end{array}$
- We still need some additional checks
- ...but the first results should appear soon!

Muon Capture on Other Light Nuclei from First Principles

- \bullet Eventually, we plan to extend the studies to $^{32}{\rm S},~^{48}{\rm Ti}$ and $^{56}{\rm Fe}$
 - Comparing the theory estimates against future experimental data, we could shed light on g_A -quenching at $q \approx 100$ MeV!

Stay tuned!

Introduction

2 Ordinary Muon Capture as a Probe of 0v88 Decay

3 Recent Studies

- Muon Capture on ¹⁰⁰Mo
- Muon Capture on the Daughter Nuclei of 0
 uetaeta-Decay Triplets
- Muon Capture on ¹⁰⁶Cd

Ongoing and Future Studies

• Muon Capture on Light Nuclei from First Principles

5 Summary

L. Jokiniemi (UB&JYU)

OMC vs $0\nu\beta\beta$ Decay

20.04.2020 31/33

- By studying OMC we shed light on the unknown effective values of g_A on the momentum-exchange region relevant for $0\nu\beta\beta$ decay
- In order to probe the effective value of $g_{\rm P}$ we would need to have data on capture rates to individual states
- Our computations managed to reproduce the observed location of OMC giant resonance in ¹⁰⁰Nb
- However, comparing the obtained total capture rate with the Primakoff estimate suggests strongly quenched g_A
- There are similarities between the energy-multipole decompositions of $0\nu\beta\beta$ decay and OMC matrix elements
- First ab initio muon-capture studies in progress

L. Jokiniemi (UB&JYU)

OMC vs $0\nu\beta\beta$ Decay

20.04.2020 33 / 33