

Calculation of yield in OMC on ²⁴Mg

Yu.Shitov

MONUMENT meeting, online, 20/04/2021

Data processing and hit types

- μ-stops are analyzing separately in C0 and C1 counters inside CW=14 μs coincidence window. For each ge-hit we determine its type:
- // mu-ge hits coincidences determined with

// C1 entrance counter while C0 (ring) counter is using as veto

- // Hit types:
- // 1 good: events with single muon in C1 in CW
- // 2 multiple: multiple muons in C1 in CW
- // 3 flagged: single mu in C1, but non-zero flag(s)
 // either in ge- or/and muon hit
- // 4 **uncorrelated**: no muons in C1 in CW
- // 5 uncorrelated0: like 4, but was muon in C0
- // 6 good0: like 1, but was muon in C0

```
For yield analysis we group 1-3+6-hit as correlated (C), and 4+5 as uncorrelated (LL).
```


 μ^{-}

CO

C1

M

γ-peak: contributions

- In γ -peak we have 3 contributions:
 - 1. γ-rays from isotope produced in OMC(C)
 - 2. γ-rays from the same long-lived (LL) (w.r.t. CW=14 μs) isotope (0 if not exist)
 - **3.** From pedestal, but don't care if count peak intensities.
- Our task is to determine both C and LL production w.r.t. to OMC rate

Time spectra

Fractions of spectra (applied for 440 keV for example)

- LLC1 Long-lived part of spectra in uncorrelated part of correlated spectra
- LLC0 long-lived part of spectra in OMC-correlated part of spectra
- **C OMC-correlated** (directly produced in OMC) events
- U long-lived part in uncorrelated spectra.

How to calculate C and LLA?

- 1. Taking 2D histos for all correlated event (Good+Mult + Good0),
- Making hAC0 1D histo as TH2::ProectionY(), for correlated part of spectra [0, Tmin=8] mks fit counting area (no fit) and AC0 = C + LLC0.
- 3. Making hLLC1 1D histo as TH2::ProjectionY() for OMC-free tail in [Tmin=8, Tmax=14] mks
- 4. Make aggregated histo hLLC1U = hU (histo of all uncorrelated events U + U0) + hLLC1, fit it with gauss + pol1 model and take gaus area as LLC1U = LLC1 + LLU. Fix position&sigma of gauss for all next fits as it is natural peak w/o Doppler broadening with maximal intensity.
- 5. Fit hLLC1 with gauss + pol1 model (fixed position & sigma from 4.) and take gauss area as LLC1.
- Assuming flat LL distribution in correlated spectra one can calculate LLC0 = LLC1 * Tmin / (Tmax -Tmin)=LLC1*4/3.
- 7. Now one can count total intensity of OMC-correlated events as C = AC0 LLC0
- 8. Finally calculate total number of LL events as LLA = LLC1U + LLCO.

Defining number of mu-stops

 Determined using full set of Mg-24 μX-ray K-series lines. Peak intensities has been counted as all counts (light blue) above linear background (shown by green color).

Check random coincidences on μ X K- α

- It is obvious that events correlated with OMS can randomly fall into the uncorrelated part of the spectrum for various reasons.
- The proportion of such events can be estimated by repeating the described analysis for the μX-ray K-α line, calculating the number of correlated AC and all long-lived LLA.
- The analysis shows that the proportion of random LLA/AC = 0.17%, while for some reason there is a shift in the peak position by 1.23 keV for correlated and random LLA. The reason for the shift is not clear.

Test on µX K-

series

- Determined ratios of lines from Kseries of µX.
- No correction on efficiencies has been applied here

²⁴Mg^{µX}-K2(353): OMC-correlated (C) yield

Results for different lines

- **NOTE!** Next some results were **NOT** corrected on detector efficiency factor eff($\sum \mu X(K)$)/eff(E γ).
- Just show some interesting lines to demonstrate different features

Example of lines

- Left picture center clean correlated line with clean doppler broadening perfect triangle.
- Left wing standard uncorrelated TI-line
- Right picture K-40 line

²³Na(2640 keV) & ²⁰⁸Tl(2615 keV)

²³Na(2640): different type of spectra

⁴⁰K (1491 keV)

²³Na(1636 keV)

 Beautiful example of mixture doppler boarded and asymmetric correlated & uncorrelated lines.

²⁰Ne(1274 keV)

Clean correlated line without visible doppler broadening

²³Na(1950 & 2391 keV)

• Clean correlated lines with visible doppler broadening – right left tails

²⁴Na(2754 keV)

Mixture of correlated (no visible doppler broadening) & uncorrelated lines.

²⁷Al(1015 keV)

 Pure correlated, but strong doppler broadening. Could be mixture of OMC from Mg-24 and AI-27 – to be checked with the fit of time evolution...

Efficiencies are taken into account...

We are adding efficiencies calculated by Nadya Efficiency factor eff($\sum \mu X(K)$)/eff(E γ).

And branching ratios

ID in code (gr==2)	E_g	Nature	Branching	
0	350.7	21Na / 22.49 s	0.0507	
1	439.9	23Ne / 37.24 s	0.33	
2	472.2	24mNa/ 20.18ms	0.9995	
	996.6	??		не видно в спектре
3	1014.52	27Mg / 9.458 m	0.282	
	843.52	27Mg / 9.458 m	0.718	слияние с другой линией
4	1274.5	22Na / 2.6018 y	0.9994	
5	1368.6	24Na /14.997h	0.999936	
6	1635.6	23Ne / 37.24 s	0.01	
7	2075.9	23Ne / 37.24 s	0.00101	
8	2754.007	24Na /14.997h	0.99855	
	1395.1	21F / 4.158 s	0.153	не видно в спектре
	1633.6	20F / 11.163 s	0.991	слияние с 23Ne
	197.1	??		
	1356.8	??		
	659.2	???		
	1041.5	??		
	1700.7	27Mg / OMC		
	1809	27Al(n,n')		

Normalization on branching ratios was added for long-lived lines

Preliminary results of the RI yields produced in OMC in ${}^{24}Mg$ (W=-0,2-6-12 us) (MB23A)

Uncorr-d_th	Energy_all	Uncor_d	Isotope/Life-time	%_BR_theor	eff-cy_exp	Int_ener_all	Int-ty_Uncorr-d	Int-ty_Uncor/BR_theor	Ycap_Uncord	Pcap_Uncord=Ycap*Lkoef	Int-ty_Eall/BR_theor	Ycap_Eall	Pcap_Eall
472,2	50812,4	29805,1	24mNa/20,18ms	0,9995	0,002232	70641,074	41436,03284	41411,15878	0,080362925	0,14051779	70598,66817	0,08090816	0,14147115
350,7	70092,1	2000,6	21Na/22,49 s	0,0507	0,0027615	78760,0168	2248,003549	44290,54724	0,085950697	0,150288231	1551743,21	1,77834353	3,10950479
439,9	111287	1489,45	23Ne/37,24 s	0,33	0,0023485	147040,052	1967,963956	5956,967259	0,011560153	0,020213389	445085,7802	0,51008144	0,89189781
1274,5			22Na/2,6018 y	0,9994	0,0011567								
1368,6	23940	13359	24Na/14,997h	0,999936	0,00110622	67152,8448	37472,63383	37433,8097	0,07264444	0,12702171	67083,27002	0,07687941	0,13442672
2754,007	13460	7895	24Na/14,997h	0,99855	0,000656	63668,2622	37344,79421	37357,88387	0,072497098	0,126764076	63690,57845	0,07299128	0,12762818
1635,6			23Ne/37,24 s	0,01	0,0009865								
2075,9			23Ne/37,24 s	0,00101	0,0008345								
1633,6	6840,71	1997,76	20F/11,6 s	0,991	0,0009873	21499,7702	6278,789912	6328,842828	0,012281818	0,02147525	21671,16091	0,02483579	0,04342637

 $\tau = 945 \, \text{ns}$

Yield of ²⁴Na in OMC with ²⁴Mg is: 12,7 %

 $\Lambda_{cap} = 0,605 \times 10^{6}$

 $\Lambda_{\rm tot}$ = 1,058 x 10⁶

 $\Lambda_{\rm koef}$ = 1,74864

Yield of ^{24m}Na in OMC with ²⁴Mg is: 14,05 %

Yield of ²³Ne in OMC with ²⁴Mg is: 2,02 %

Yield of ²⁰F in OMC with ²⁴Mg is: 2,14 %

Preliminary results of the RI yields produced in OMC in ${}^{24}Mg$ (W=-0,2-6-12 us) (MB18B)

Uncorr-d_th	Energy_all	Uncor_d	Isotope/Life-time	%_BR_theor	eff-cy_exp	Int_ener_all	Int-ty_Uncorr-d	Int-ty_Uncor/ BR_theor	Ycap_Uncord	Pcap_Uncord=Ycap*Lkoef	Int-ty_Eall/ BR_theor	Ycap_Eall	Pcap_Eall
472,2	47749,7	28049,1	24mNa/ 20,18ms	0,9995	0,00225642	66332,4302	38964,95617	38941,5655	0,079149248	0,138395626	66292,61082	0,078657449	0,1375357
350,7	70092,1	2000,6	21Na / 22,49 s	0,0507	0,0027918	78697,325	2246,214174	44255,29266	0,089949469	0,157280244	1550508,047	1,839707405	3,21680199
439,9	105965	1407,49	23Ne / 37,24 s	0,33	0,0023745	139883,172	1858,011278	5624,143835	0,011431147	0,019987818	423422,1213	0,502398432	0,87846375
874,4													
996,6													
1274,5			22Na / 2,6018 y	0,9994	0,00114093								
1368,6	22912,6	13021,9	24Na /14,997h	0,999936	0,001087	66072,3922	37550,87088	37511,96569	0,076243567	0,133314927	66003,93683	0,078314931	0,13693679
2754,007	12988,7	7641,54	24Na /14,997h	0,99855	0,00060791	66973,2848	39401,86739	39415,67807	0,080112888	0,140080589	66996,75952	0,079492935	0,13899658
1635,6			23Ne / 37,24 s	0,01	0,00095869								
2075,9			23Ne / 37,24 s	0,00101	0,0007959								
1395,1													
1633,6	4369,9	1840,46		0,991	0,00095954	14275,2465	6012,270351	6060,198642	0,012317434	0,021537526	14389,04515	0,017072877	0,02985261

 $\tau = 945 \, \text{ns}$

Yield of ²⁴Na in OMC with ²⁴Mg is: 13,3 %

 Λ_{cap} = 0,605 x 10⁶

 $\Lambda_{\rm tot}$ = 1,058 x 10⁶

 $\Lambda_{\rm koef}$ = 1,74864

Yield of ^{24m}Na in OMC with ²⁴Mg is: 13,8 %

Yield of ²³Ne in OMC with ²⁴Mg is: 1,99 %

Yield of ²⁰F in OMC with ²⁴Mg is: 2,15 %

Conclusion

- Analysis of LL-isotopes is in progress
- Two approaches (me and Daniya) are developing.
- Comparison of results and joint analysis & result will be soon.