Calculation of yield in OMC on ${ }^{24} \mathrm{Mg}$

Yu.Shitov

MONUMENT meeting, online, 20/04/2021

Data processing and hit types

- μ-stops are analyzing separately in C0 and C1 counters inside CW=14 $\mu \mathrm{s}$ coincidence window. For each ge-hit we determine its type:
// mu-ge hits coincidences determined with
// C1 entrance counter while C 0 (ring) counter is using as veto
// Hit types:
// 1 -good: events with single muon in C 1 in CW
// 2 - multiple: multiple muons in C 1 in CW
// 3 - flagged: single mu in C1, but non-zero flag(s) either in ge- or/and muon hit
// 4 - uncorrelated: no muons in C 1 in CW
// 5 - uncorrelated0: like 4, but was muon in C0
// 6 -good0: like 1 , but was muon in C 0
For yield analysis we group 1-3+6-hit as correlated (C), and 4+5 as uncorrelated (LL).

γ-peak: contributions

- In γ-peak we have $\mathbf{3}$ contributions:

1. γ-rays from isotope produced in OMC (C)
2. γ-rays from the same long-lived (LL) (w.r.t. CW=14 $\mu \mathrm{s}$) isotope (0 if not exist)
3. From pedestal, but don't care if count peak intensities.

- Our task is to determine both C and LL production w.r.t. to OMC rate

Time spectra

Fractions of spectra (applied for 440 keV for example)

- LLC1 - Long-lived part of spectra in uncorrelated part of correlated spectra
- LLCO - long-lived part of spectra in OMC-correlated part of spectra
- C - OMC-correlated (directly produced in OMC) events
- U - long-lived part in uncorrelated spectra.

How to calculate C and LLA?

1. Taking 2D histos for all correlated event (Good+Mult + GoodO),
2. Making hACO 1D histo as TH2::ProectionY(), for correlated part of spectra [0, Tmin=8] mks fit counting area (no fit) and $A C O=C+\operatorname{LLCO}$.
3. Making hLLC1 1D histo as TH2::ProjectionY() for OMC-free tail in [Tmin=8, Tmax=14] mks
4. Make aggregated histo hLLC1U $=h U$ (histo of all uncorrelated events $U+U 0$) $+h L L C 1$, fit it with gauss + pol1 model and take gaus area as LLC1U = LLC1 + LLU. Fix position\&sigma of gauss for all next fits as it is natural peak w/o Doppler broadening with maximal intensity.
5. Fit hLLC1 with gauss + poll model (fixed position $\&$ sigma from 4.) and take gauss area as LLC1.
6. Assuming flat LL distribution in correlated spectra one can calculate LLCO = LLC1 * Tmin / (Tmax Tmin)=LLC1*4/3.
7. Now one can count total intensity of OMC-correlated events as $\mathbf{C = A C O}$ - LLCO
8. Finally calculate total number of LL events as LLA = LLC1U + LLCO.

Defining number of mu-stops

- Determined using full set of Mg-24 $\mu \mathrm{X}$-ray K-series lines. Peak intensities has been counted as all counts (light blue) above linear background (shown by green color).

Check random coincidences on $\mu \mathrm{X}$ K- α

- It is obvious that events correlated with OMS can randomly fall into the uncorrelated part of the spectrum for various reasons.
- The proportion of such events can be estimated by repeating the described analysis for the μ X-ray K- α line, calculating the number of correlated AC and all long-lived LLA.
- The analysis shows that the proportion of random LLA/AC = 0.17%, while for some reason there is a shift in the peak position by 1.23 keV for correlated and random LLA. The reason for the shift is not clear.
${ }^{24} \mathrm{Mg}{ }^{1 \mathrm{X}}$ - -1 (296): AC spectrum

${ }^{24} \mathrm{Mg}^{14}$ - $-1(296)$: AC spectrum

${ }^{24} \mathrm{Mg}^{\mu \mathrm{X}}-\mathrm{K} 1(296):$ OMC-correlated (C) yield

Test on $\mu \mathrm{X}$ K-

series

- Determined ratios of lines from Kseries of $\mu \mathrm{X}$.
- No correction on efficiencies has been applied here

${ }^{24} \mathrm{Mg}^{4 \mathrm{X}}-\mathrm{K} 2(353)$: OMC-correlated (C) yield

${ }^{24} \mathrm{Mg}^{\mu \wedge}-\mathrm{K} 4-\mathrm{N}:$ OMC-correlated (C) yield

Results for different lines

- NOTE! Next some results were NOT corrected on detector efficiency factor eff($\Sigma \mu \mathrm{X}(\mathrm{K})) / \mathrm{eff}(\mathrm{E} \gamma)$.
- Just show some interesting lines to demonstrate different features

Example of lines

- Left picture - center - clean correlated line with clean doppler broadening - perfect triangle.
- Left wing - standard uncorrelated TI-line
- Right picture - K-40 line
${ }^{23} \mathrm{Na}(2640 \mathrm{keV}) \&{ }^{208} \mathrm{Tl}(2615 \mathrm{keV})$
${ }^{23} \mathrm{Na}(2640)$: different type of spectra

${ }^{40} \mathrm{~K}$ (1491 keV)

${ }^{23} \mathrm{Na}(1636 \mathrm{keV})$

- Beautiful example of mixture doppler boarded and asymmetric correlated \& uncorrelated lines.

${ }^{23} \mathrm{Na}$ (1636): Long-lived (LL) yield

${ }^{20} \mathrm{Ne}(1274 \mathrm{keV})$

- Clean correlated line without visible doppler broadening

${ }^{22} \mathrm{Ne}$ (1274): Long-lived (LL) yield

${ }^{23} \mathrm{Na}(1950$ \& 2391 keV$)$

- Clean correlated lines with visible doppler broadening - right left tails

${ }^{24} \mathrm{Na}(2754 \mathrm{keV})$

- Mixture of correlated (no visible doppler broadening) \& uncorrelated lines.

${ }^{24} \mathrm{Na}(2754)$: Long-lived (LL) yield

${ }^{27} \mathbf{A l}(1015 \mathrm{keV})$

- Pure correlated, but strong doppler broadening. Could be mixture of OMC from Mg24 and AI-27 - to be checked with the fit of time evolution...

Efficiencies are taken into account...

We are adding efficiencies calculated by Nadya Efficiency factor eff($\left.\sum \mu \mathrm{X}(\mathrm{K})\right) /$ eff($\left.\mathrm{E} \gamma\right)$.

And branching ratios

ID in code (gr==2)	E_g	Nature	Branching	
0	350.7	$21 \mathrm{Na} / 22.49 \mathrm{~s}$	0.0507	
1	439.9	$23 \mathrm{Ne} / 37.24$ s	0.33	
2	472.2	$24 \mathrm{mNa} / 20.18 \mathrm{~ms}$	0.9995	
	996.6	??		не видно в спектре
3	1014.52	27Mg / 9.458 m	0.282	
	843.52	$27 \mathrm{Mg} / 9.458 \mathrm{~m}$	0.718	слияние с другой ли
4	1274.5	22Na / 2.6018 y	0.9994	
5	1368.6	24Na /14.997h	0.999936	
6	1635.6	$23 \mathrm{Ne} / 37.24$ s	0.01	
7	2075.9	$23 \mathrm{Ne} / 37.24$ s	0.00101	
8	2754.007	24Na /14.997h	0.99855	
	1395.1	21F / 4.158 s	0.153	не видно в спектре
	1633.6	20F/ 11.163 s	0.991	слияние с 23 Ne
	197.1	??		
	1356.8	??		
	659.2	???		
	1041.5	??		
	1700.7	27Mg / OMC		
	1809	27Al(n, ${ }^{\prime}$)		

Normalization on branching ratios was added for long-lived lines

Preliminary results of the RI yields produced in OMC in ${ }^{24} \mathrm{Mg}$ ($\mathrm{W}=-0,2-6-12$ us) (MB23A)

Uncorr-d_th	Energy_all	Uncor_d	Isotope/Life-time	\%_BR_theor	eff-cy_exp	Int_ener_all	Int-ty_Uncorr-d	Int-ty_Uncor/ BR_theor	Ycap_Uncord	Pcap_Uncord=Ycap*Lkoef	Int-ty_Eall/ BR_theor	Ycap_Eall	Pcap_Eall
472,2	50812,4	29805,1	$24 \mathrm{mNa} / 20,18 \mathrm{~ms}$	0,9995	0,002232	70641,074	41436,03284	41411,15878	0,080362925	0,14051779	70598,66817	0,08090816	0,14147115
350,7	70092,1	2000,6	$21 \mathrm{Na} / 22,49 \mathrm{~s}$	0,0507	0,0027615	78760,0168	2248,003549	44290,54724	0,085950697	0,150288231	1551743,21	1,77834353	3,10950479
439,9	111287	1489,45	$23 \mathrm{Ne} / 37,24 \mathrm{~s}$	0,33	0,0023485	147040,052	1967,963956	5956,967259	0,011560153	0,020213389	445085,7802	0,51008144	0,89189781
1274,5			$22 \mathrm{Na} / 2,6018 \mathrm{y}$	0,9994	0,0011567								
1368,6	23940	13359	$24 \mathrm{Na} / 14,997 \mathrm{~h}$	0,999936	0,00110622	67152,8448	37472,63383	37433,8097	0,07264444	0,12702171	67083,27002	0,07687941	0,13442672
2754,007	13460	7895	$24 \mathrm{Na} / 14,997 \mathrm{~h}$	0,99855	0,000656	63668,2622	37344,79421	37357,88387	0,072497098	0,126764076	63690,57845	0,07299128	0,12762818
1635,6			$23 \mathrm{Ne} / 37,24 \mathrm{~s}$	0,01	0,0009865								
2075,9			$23 \mathrm{Ne} / 37,24 \mathrm{~s}$	0,00101	0,0008345								
1633,6	6840,71	1997,76	20F/11,6 s	0,991	0,0009873	21499,7702	6278,789912	6328,842828	0,012281818	0,02147525	21671,16091	0,02483579	0,04342637

$\tau=945 \mathrm{~ns}$
$\Lambda_{\text {cap }}=0,605 \times 10^{6}$
$\Lambda_{\text {tot }}=1,058 \times 10^{6}$
$\Lambda_{\text {koef }}=1,74864$

Yield of ${ }^{24} \mathrm{Na}$ in OMC with ${ }^{24} \mathrm{Mg}$ is: $12,7 \%$
Yield of ${ }^{24 \mathrm{~m}} \mathrm{Na}$ in OMC with ${ }^{24} \mathrm{Mg}$ is: $14,05 \%$
Yield of ${ }^{23} \mathrm{Ne}$ in OMC with ${ }^{24} \mathrm{Mg}$ is: $\mathbf{2 , 0 2 \%}$
Yield of ${ }^{20} \mathrm{~F}$ in OMC with ${ }^{24} \mathrm{Mg}$ is: $\mathbf{2 , 1 4 \%}$

From

Daniya

Preliminary results of the RI yields produced in OMC in ${ }^{24} \mathrm{Mg}$ ($\mathrm{W}=-0,2-6-12 \mathrm{us}$) (MB18B)

Uncorr-d_th	Energy_all	Uncor_d	Isotope/Life-time	\%_BR_theor	eff-cy_exp	Int_ener_all	Int-ty_Uncorr-d	Int-ty_Uncor/ BR_theor	Ycap_Uncord	Pcap_Uncord=Ycap*Lkoef	Int-ty_Eall/ BR_theor	Ycap_Eall	Pcap_Eall
472,2	47749,7	28049,1	$24 \mathrm{mNa} / 20,18 \mathrm{~ms}$	0,9995	0,00225642	66332,4302	38964,95617	38941,5655	0,079149248	0,138395626	66292,61082	0,078657449	0,1375357
350,7	70092,1	2000,6	$21 \mathrm{Na} / 22,49 \mathrm{~s}$	0,0507	0,0027918	78697,325	2246,214174	44255,29266	0,089949469	0,157280244	1550508,047	1,839707405	3,21680199
439,9	105965	1407,49	$23 \mathrm{Ne} / 37,24 \mathrm{~s}$	0,33	0,0023745	139883,172	1858,011278	5624,143835	0,011431147	0,019987818	423422,1213	0,502398432	0,87846375
874,4													
996,6													
1274,5			$22 \mathrm{Na} / 2,6018 \mathrm{y}$	0,9994	0,00114093								
1368,6	22912,6	13021,9	24Na/14,997h	0,999936	0,001087	66072,3922	37550,87088	37511,96569	0,076243567	0,133314927	66003,93683	0,078314931	0,13693679
2754,007	12988,7	7641,54	$24 \mathrm{Na} / 14,997 \mathrm{~h}$	0,99855	0,00060791	66973,2848	39401,86739	39415,67807	0,080112888	0,140080589	66996,75952	0,079492935	0,13899658
1635,6			$23 \mathrm{Ne} / 37,24 \mathrm{~s}$	0,01	0,00095869								
2075,9			$23 \mathrm{Ne} / 37,24 \mathrm{~s}$	0,00101	0,0007959								
1395,1													
1633,6	4369,9	1840,46		0,991	0,00095954	14275,2465	6012,270351	6060,198642	0,012317434	0,021537526	14389,04515	0,017072877	0,02985261

$\tau=945 \mathrm{~ns}$
Yield of ${ }^{24} \mathrm{Na}$ in OMC with ${ }^{24} \mathrm{Mg}$ is: 13,3 \%
$\Lambda_{\text {cap }}=0,605 \times 10^{6}$
$\Lambda_{\text {tot }}=1,058 \times 10^{6}$
Yield of ${ }^{24 \mathrm{~m}} \mathrm{Na}$ in OMC with ${ }^{24} \mathrm{Mg}$ is: $13,8 \%$
Yield of ${ }^{23} \mathrm{Ne}$ in OMC with ${ }^{24} \mathrm{Mg}$ is: $1,99 \%$

From

Daniya

Yield of ${ }^{20} \mathrm{~F}$ in OMC with ${ }^{24} \mathrm{Mg}$ is: $\mathbf{2 , 1 5 \%}$

Conclusion

- Analysis of LL-isotopes is in progress
- Two approaches (me and Daniya) are developing.
- Comparison of results and joint analysis \& result will be soon.

