Centrality determination based on charged particle multiplicity

Petr Parfenov, Dim Idrisov, Ilya Segal, Vinh Luong, Arkadiy Taranenko NRNU MEPhI

> MPD Physics Forum 15 April 2021

> This work is supported by:

the RFBR according to the research project No. 18-02-40086 and No. 18-02-40065 the European Union's Horizon 2020 research and innovation program under grant agreement No. 871072

Outline

- Introduction
- PHOBOS Glauber Monte Carlo (MC-Glauber)
- Methods of centrality determination based on charged particle multiplicity
 - MC-Glauber based (MC-Gl)
 - Bayesian inversion method (Γ-fit)
- Comparison of the centrality determination for different models
- Centrality framework performance in MPD
- Summary

Motivation

Evolution of matter produced in heavy-ion collisions depend on its initial geometry Centrality procedure maps initial geometry parameters with measurable quantities

This allows comparison of the future MPD results with the data from other experiments (STAR BES, NA49/NA61 scans) and theoretical models

Collision geometry

- Models: Impact parameter *b*
- Measurable quantities (Experiment): Multiplicity or transverse energy of the produced particles

Energy of the spectators

Centrality in STAR experiment

- Uncorrected primary (|DCA| < 2 cm) charged particle multiplicity distribution in TPC (|η|<0.5)
- Comparison with MC Glauber simulations
- Fitted using two-component model:

$$\frac{dN_{ch}}{d\eta}\bigg|_{\eta=0} = n_{pp} \left[(1-x)N_{part}/2 + xN_{coll} \right]$$

Different centrality estimators are needed in MPD (NICA) for detailed studies and comparisons with existing experimental results

Centrality frameworks: links

- Glauber-based centrality framework (MC-GI):
 - Git link: https://github.com/FlowNICA/CentralityFramework
 - Manual:

 $https://github.com/FlowNICA/CentralityFramework/blob/master/Documentation/CentralityFrameworkManual_Glauber.pdf$

- The Bayesian inversion method (Γ-fit):
 - Git link: https://github.com/Dim23/GammaFit
 - Manual: https://github.com/Dim23/GammaFit/blob/master/Readme.pdf
- Draft of analysis note:

https://github.com/FlowNICA/CentralityFramework/blob/master/Documentation/Centrality_AnalysisNote.pdf

PHOBOS Glauber Monte Carlo (MC-Glauber)

Input for the model

• Nuclear density distribution (Woods-Saxon):

$$\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{a})}$$
R – nuclear radius
a – skin-depth

- Au+Au
 - R = 6.55 fm, a = 0.523 fm
- Bi+Bi
 - R = 6.75 fm, a = 0.468 fm
- Inelastic NN cross section $\sigma_{_{NN}}$
 - $\sigma_{_{NN}}$ =29.3 mb for $\sqrt{s}_{_{NN}}$ =4.5 GeV
 - $\sigma_{_{NN}}$ =29.7 mb for $\sqrt{s}_{_{NN}}$ =7.7 GeV
 - $\sigma_{_{NN}}$ =30.8 mb for $\sqrt{s}_{_{NN}}$ =9.46 GeV
 - $\sigma_{_{NN}}$ =31.2 mb for $\sqrt{s}_{_{NN}}$ =11.5 GeV

Output from the model

- TNtuple with model parameters:
 - Impact parameter b
 - Number of participating in the collision nucleons $N_{\mbox{\tiny part}}$
 - Number of NN collisions $\rm N_{coll}$
 - Participant eccentricity ϵ_n
 - etc.

C. Loizides, J. Nagle and P. Steinberg, SoftwareX 1-2 (2015) 13-18 Used improved version of the PHOBOS Glauber Monte Carlo software. TGlauberMC-3.2 version from tglaubermc.hepforge.org: https://tglaubermc.hepforge.org/downloads/

MC-Glauber configuration

Used TGlauberMC-3.2 version from tglaubermc.hepforge.org: https://tglaubermc.hepforge.org/downloads/

One should manually set parametrization for ¹⁹⁷Au and ²⁰⁹Bi in **runlauber_v3.2.C** (under the line number 1172):

else if (TString(name) == "Au3")
 {fN = 197; fR = 6.5541; fA = 0.523; fW = 0; fF = 1; fZ=79;}
else if (TString(name) == "Bi")
 {fN = 209; fR = 6.75; fA = 0.468; fW = 0; fF = 1; fZ=83;}

And set up inelastic NN cross section $\sigma_{_{NN}}$ – one can find it as the difference between the total and elastic cross sections for p+p collisions found here: https://pdg.lbl.gov/2020/hadronic-xsections/hadron.html

- $\sigma_{_{NN}}$ =29.3 mb for $\sqrt{s}_{_{NN}}$ =4.5 GeV
- $\sigma_{_{NN}}$ =29.7 mb for $\sqrt{s}_{_{NN}}$ =7.7 GeV
- $\sigma_{_{NN}}$ =30.8 mb for $\sqrt{s}_{_{NN}}$ =9.46 GeV
- $\sigma_{_{NN}}$ =31.2 mb for $\sqrt{s}_{_{NN}}$ =11.5 GeV

7

MC-Glauber based centrality framework

- µ mean multiplicity value
- \mathbf{k} width of the multiplicity distribution, can be connected to the fluctuations

This centrality procedure was used in CBM, NA49, and NA61/SHINE:

- I. Segal, I. Selyuzhenkov et al., J.Phys.Conf.Ser. 1690 (2020) 1, 012107
- V. Klochkov, I. Selyuzhenkov et al., EPJ Web Conf. 182 (2018) 02132 Implemantation for MPD: https://github.com/FlowNICA/CentralityFramework

Centrality framework software layout

- **config.txt.template** contains parameters for the framework
- parameter.list contains a set of parameters for the fit procedure

Final steps of the centrality determination analysis

How to implement results in MDPROOT:

Resulting output file from CentralityClasses.C macro is called FINAL.root. One can generate simple C++ function GetCentMult(Int_t mult): CentralityFramework/Framework/printFinal.C

The Bayesian inversion method (Γ -fit): main assumptions

• Relation between multiplicity N_{ch} and impact parameter b is defined by the fluctuation kernel:

$$P(N_{ch}|c_b) = \frac{1}{\Gamma(k(c_b))\theta^k} N_{ch}^{k(c_b)-1} e^{-n/\theta}$$

 $c_{\mbox{\tiny b}}$ – impact parameter based centrality

$$c_{b} = \frac{1}{\sigma_{inel}} \int_{0}^{b} P_{inel}(b') 2 \pi b' db' \simeq \frac{\pi b^{2}}{\sigma_{inel}}$$

 σ_{inel} – geometrical inelastic NN cross section $P_{inel}(b)$ – probability of inelastic NN collision ($P_{inel}(b) \approx 1$) Implementation for STAR data: Phys. Rev. C 97, 014905 (2018)

R. Rogly, G. Giacalone and J. Y. Ollitrault, Phys.Rev. C98 (2018) no.2, 024902 Implementation in MPD: https://github.com/Dim23/GammaFit

Γ-fit: parametrizations for the fit function

• Charged particle multiplicity distribution: $P(N_{ch}) = \int_{0}^{1} P(N_{ch} | c_{b}) dc_{b}$ $P(N_{ch} | c_{b}) = f(k(c_{b}), \theta(c_{b}), \sigma_{inel})$

 σ_{inel} was used for 2 systems:

- Au+Au: σ_{inel} = 677 (±2%) fm²
- Bi+Bi: $\sigma_{inel} = 686 \text{ fm}^2$

Parameters for gamma-function approach: $k(c_b) = k_{max} \cdot \exp\left(-\sum_{i=1}^{3} a_i c_b^i\right), \ \theta = const$ $\left(k(c_b) \theta \equiv \overline{N_{ch}}(c_b), \ \sqrt{k(0)} \theta \equiv \sigma(0)\right)$ Free parameters: k_{max}, θ, a_i .

Reconstruction of *b*

• Find probability of *b* for fixed N_{ch} using Bayes' theorem:

$$P(b|N_{ch}) = \frac{P(N_{ch}|b)P(b)}{P(n)}$$

$$P(b|n_1 < N_{ch} < n_2) = P(b)\frac{\int_{n_1}^{n_2} P(b|n)dn}{\int_{n_1}^{n_2} P(n)dn}$$

The Bayesian inversion method consists of 2 steps:

- Fit normalized multiplicity distribution with $P(N_{ch})$
- Construct $P(b|N_{ch})$ using Bayes' theorem with parameters from the fit

How to implement results in MDPROOT:

The whole procedure was done in GammaFit/GammaFit.C

One can generate simple C++ function GetCentMult(Int_t mult) from the output file GammaFit/printFinal.C

Comparison of the centrality determination for different models

Charged particle multiplicity at NICA energies

Models for event simulation:

- UrQMD ver. 3.4 in cascade mode
- AMPT ver. 1.26 with string melting mode ver. 2.26, σ_{part} =1.5 mb
- DCM-QGSM-SMM

Simulated data sets:

- Au+Au, N_{ev}=500k, $\sqrt{s_{_{NN}}}$ =4.5, 7.7, 11.5 GeV

Hadron selection:

- |η|<0.5
- Charged particles only
- p₇>0.15 GeV/c

Fit of N_{ch}: UrQMD

Fit of N_{ch}: AMPT SM, σ_p =1.5 mb

Fit of N_{ch}: DCM-QGSM-SMM

vs Centrality: MC-Glauber **UrOMD** 16 √s_{NN} = 7.7 GeV UrQMD, Au+Au √s_{NN} = 11.5 GeV (c) (a) (b) √s_{NN} = 4.5 GeV 14 12 _ ⊈ [⊈] $\mathsf{cb}\mathsf{b} \pm \sigma_{\mathsf{b}}, \mathsf{fm}$ 10 4 ₫ ₫ MC-GI ¢ Model 1.1 (e) MC-GI/Model 1.05 0.95 0.9 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 0 0 0 Centrality, %

Agreement within 1-4%

vs Centrality: MC-Glauber

Agreement within 1-10%

vs Centrality: MC-Glauber

Agreement within 1-4%

Agreement within 1-3%

vs Centrality: Γ-fit

Agreement within 1-2%

vs Centrality: Γ-fit

Agreement within 1-2%

Model comparison: Conclusion

- Γ-fit method:
 - Shows better agreement for centrality dependence of
 - But: requires information about total multiplicity integral
- MC-Glauber method:
 - Shows worse agreement for
 - But: automatically approximates multiplicity dependence in the peripheral region

Centrality framework performance in MPD

Centrality determination performance in MPD

 Multiplicity of produced charged particles in Time Projection Chamber

Official productions were used:

- Request 9, PWG3, UrQMD, GEANT4
 Au+Au, N_{ev}=500k, √s_{NN}=7.7 GeV
- Request 5, PWG4, UrQMD, GEANT4
 - Bi+Bi, N $_{\rm ev}$ =500k, $\sqrt{s}_{_{\rm NN}}$ =9.46 GeV
- Request 7, PWG4, PHQMD, GEANT3
 Bi+Bi, N_{ev}=500k, √s_{NN}=9 GeV

Requested data set I

Good fit quality for both methods

vs Centrality: MC-Glauber

<N_{part}>, <N_{coll}> vs Centrality: MC-Glauber

Systematic uncertainties for given parameter variations are within 1-3%

Systematic uncertainties for given parameter variations are within 1-2%

Requested data set II

Good fit quality for both methods

vs Centrality: MC-Glauber

Systematic uncertainties for given parameter variations are within 1-4%

Systematics study: MC-Glauber

Requested data set III

Good fit quality for both methods

vs Centrality: MC-Glauber

Systematic uncertainties for given parameter variations are within 1-4%

Summary and next steps

- Centrality determination for UrQMD, AMPT, DCM-QGSM-SMM:
 - Fitted functions from both methods reproduce charged particle multiplicity
 - Extracted relations between impact parameter and multiplicity centrality classes are in a reasonable agreement for both methods and for all given models
- Performance study was done for fully reconstructed data sets within MPDROOT framework:
 - Results are consistent with ones from the models
 - Used primary track selection based on DCA
 - Systematic study shows sensitivity for within 1-3%
- Draft of the analysis note, code and manuals are provided with the code (see slide 6)

Thank you for your attention!

Centrality in NA49 & NA61/SHINE

t range<4500)

²=2.4.

Na49 Preliminary

Pb+Pb, 40A GeV

Centrality Framework developed by V. Klochkov and I. Selyuzhenkov was used in both experiments

0.4 0.2 Nuclear Physics A 982, p. 439-442 0.2 0.4 0.6 0.8 1.2 Ľ NA61/SHINE performance — minbias (T4) 4000 5000 6000 7000 8000 9000 M_{trk}/M_{trk max} а. Eveto [GeV] Pb+Pb @ 30A GeV/c central (T2) 10⁴ ---- M., NA49 MWN [MC-Glauber] (fit range>130) f.,=1, μ=1.1, σ=2.5, χ²=0.5 10^{3} 0-5% 10^{2} 0-5% >60%) Preliminary + WNM [MC-Glauber] ³b. 40A GeV 10 00 300 500 400 M 4000 2000 6000 80 60 100 PSD energy (GeV) Event classes, %

Both charged particle multiplicity and energy deposition can be used

KnE Energy & Physics, p. 275–279

profile

corrected profile

- corrected fit

AP Eveto

AP M_{rk}

NA49 preliminary
Pb+Pb, 40A GeV

Next step: comparison of centrality estimators

- Centrality determination based on energy deposition in FHCal is performed by the group from INR RAS (Troitsk, Moscow)
- It planned to compare different centrality estimators and their effect on the measurements (vn)

For that study, production of reconstructed DCM-QGSM-SMM minbias events is requested:

5M events, GEANT4, Bi+Bi, √s_{NN}=4.5, 7.7, 11 GeV

BES programs

STAR BES-II program

Beam energy (GeV/nucleon)	√s _{NN} (GeV)	Run Time	Species	Number Events
9.8	19.6	4.5 weeks	Au+Au	400M MB
7.3	14.5	5.5 weeks	Au+Au	300M MB
5.75	11.5	5 weeks	Au+Au	230M MB
4.6	9.1	4 weeks	Au+Au	160M MB
31.2	7.7 (FXT)	2 days	Au+Au	100M MB
19.5	6.2 (FXT)	2 days	Au+Au	100M MB
13.5	5.2 (FXT)	2 days	Au+Au	100M MB
9.8	4.5 (FXT)	2 days	Au+Au	100M MB
7.3	3.9 (FXT)	2 days	Au+Au	100M MB
5.75	3.5 (FXT)	2 days	Au+Au	100M MB

Many new experimental results at NICA energy range ($\sqrt{s_{_{NN}}}$ =4-11 GeV) will be done during STAR (RHIC) and NA61/SHINE (SPS) BES

This will require comparison of the future MPD measurements with the RHIC/SPS

Simulating Glauber data

General usage of the **runlauber_v3.2.C**:

```
root -l .L runlauber_v3.2.C+ runAndSaveNtuple(N_{ev}, "Target", "Projectile", \sigma_{_{NN}}) .q
```

Recommended arguments:

- $N_{ev} = 5 \cdot 10^5$,
- "Target, Projectile" = "Au3" or "Bi"
- σ_{NN}:
 - > $\sigma_{_{NN}}$ =29.3 mb for $\sqrt{s_{_{NN}}}$ =4.5 GeV
 - > $\sigma_{_{NN}}$ =29.7 mb for $\sqrt{s_{_{NN}}}$ =7.7 GeV
 - > $\sigma_{_{NN}}$ =30.8 mb for $\sqrt{s_{_{NN}}}$ =9.46 GeV
 - > $\sigma_{_{NN}}$ =31.2 mb for $\sqrt{s}_{_{NN}}$ =11.5 GeV