Mikropikselli Selvari Fotogücləndiricilərin temperaturdan asılılığının aradan qaldırılması və MSFD əsaslı detektorların hazırlanması

Nuruyev S.M.

Radiasiya Problemləri İnstitutu, AMEA, Bakı, Azərbaycan Birləşmiş Nüvə Tədiqatları İnstitutu, Dubna, Rusiya Federasiyası

sebuhinuruyev@gmail.com

Mündəricat

✓ Silisium əsaslı fotogücləndiricilər (SiPM).

 Mikropikselli selvari fotogücləndiricilərin (MSFD) temperaturdan asılılığının aradan qaldırılması.

 Mikropikselli selvari fotogücləndiricilər əsasında detektorların hazırlanması.

Silisium əsaslı fotogücləndiricilərin (SiPM)

FEU	SiPM
Yüksək gücləndirmə əmsalı	Yüksək gücləndirmə əmsalı
Vakkum boru	Silisium
Yüksək gərginlik (~ 1000V)	Aşağı gərginlik (~30-90 V)
Böyük ölçülər, baha qiymət	Kompaktlıq, ucuz qiymət
Maqnit sahəsinə həssaslıq	Maqnit sahəsinə həssas olmaması

Daxili gücləndirmə əmsalının gərginlikdən asılılığı

Müxtəlif temperaturlarda gərginliyin daxili gücləndirmə əmsalından asılılığı

MAPD-3NK fotogücləndiricisi üçün fərqli temperaturlarda daxili gücləndirmə əmsalının gərginlikdən asılılığı

MAPD-3NK fotogücləndiricisi üçün fərqli temperaturlarda daxili gücləndirmə əmsalının gərginlikdən asılılığı

Temperaturdan asılı olaraq deşilmə gərginliyinin dəyişməsi

Temperature (⁰C) MAPD-3NK fotogücləndiricisi üçün temperaturdan asılı olaraq deşilmə gərginliyinin dəyişməsi

MAPD-3NM fotogücləndiricisi üçün temperaturdan asılı olaraq deşilmə gərginliyinin dəyişməsi

MAPD-Bee(W) fotogücləndiricisi üçün temperaturdan asılı olaraq deşilmə gərginliyinin dəyişməsi

Fərqli istehsalçılara məxsus SiPM-lərin parametrləri

	MAPD -3NK	MAPD - 3NM	MAPD - W
Deşilmə gərginliyinin temperaturdan asılılığı, mV/V	70	50	43
Ölçüsü ,mm ²	3.7x3.7	3.7x3.7	3.7x3.7
FQE (PDE), % (420-550 nm)	~25	~28	~35
Daxili gücləndirmə əmsalı -10 ⁴	5	8	5
İşləmə gərginliyi	~90	~70	~50

NİCA

Yarımkeçiriciəsaslıfotogücləndiricilər(SiPM)"COMPASS"(CERN)kalorimetrindəistifadəedilmişdir.

Hazırda NİCA proektində iştirak edirik. NİCA proektində 60000-ə yaxın SiPM istifadəsi nəzərdə tutulur

Detektorların hazırlanmasında ən geniş istifadə olunan ssintilyatorlar

Material	NaI(Tl)	LFS-3	LFS-8	LiI(Eu)
Density(g/cm3)	3.67	3.35	3.4	4,08
Light output (%)	100	85	82	84
Decay time, (ns)	235	30	19	1400
Peak emis, (nm)	410	425	422	470
			Į.	
source	-> Pream	olifier→	CAEN Digitize	r
Dark Box	HV sou DT55	urce 33		

SiPM və LFS-8 ssintilyatoru əsasında hazırlanmış qamma detektor.

LFS-8 ssintilyatoru (3 x 3 x 0.5 mm) istifadə etməklə qamma mənbələrdən çəkilmiş spektrlər.

SiPM və LFS-8 ssintilyatoru əsasında hazırlanmış qamma detektorlar

Zərrəciyin enerjisinin enerji ayırdetmə qiymətindən asılılıq qrafiki

Rəqəmsal çeviricinin kanalının zərrəciyin enerjisindən asılılıq qrafiki.

MSFD matrisa (2x2) və YSO ssintilyatoru əsasında hazırlanmış qamma detektorun enerji spektri

¹³⁷Cs və ²⁰⁷Bi qamma mənbələrinin enerji spektri

MSFD matrisa (2x2) və LYSO ssintilyatoru əsasında hazırlanmış qamma detektorun enerji spektri

¹³⁷Cs və ²⁰⁷Bi qamma mənbələrinin enerji spekri

MSFD matrisa (2x2) və BGO ssintilyatoru əsasında hazırlanmış qamma detektorun enerji spektri

¹³⁷Cs və ²⁰⁷Bi qamma mənbələrinin enerji spektri

MSFD əsaslı detektorun qamma şüaları ilə enerji spektrinin xəttiliyinin yoxlanması.

asılılıq qrafiki

Rəqəmsal çeviricinin kanalının zərrəciyin enerjisindən asılılıq qrafiki

MSFD və stilben ssintilyatoru əsasında sürətli neytron detektoru.

PSD metodu ilə Neytron zərrəciklə Qamma şüanın ayrılması üsulu

Qrafiklərdə oordinat oxunda tam inteqral qiyməti, absis oxunda isə uzun inteqralın qiymətinin tam inteqrallamanın qiymətinə nisbəti göstərilmişdir. Alınan nəticələrdən qamma kvant və neytron zərrəciyindən alınan sinqnal asanlıqla ayrılır. Stilben ssintilyatorundan istifadə etməklə sürətli neytron detektoru hazırlanmışdır. Qamma kvantdan alınan siqnalın forması, neytron zərəciyindən alınan siqnalın formasından fərqlənir.

MSFD və Liİ(Eu) ssintilyatoru əsasında isti neytron detektoru.

Neytron və qamma detektor 2x2 MSFD və LiI(Eu) ssintilyatoru əsasında hazırlanmışdır. Neytronun qeydiyyatı ssintilyatorda Li və neytron arasındakı reaksiya hesabına baş verir. Reaksiyadan Helium və Hidrogen yaranır.

₃⁶Li+₀¹n->₂⁴He+₁³H+Q

İsti neytron (PuBe+parafin) və Ti⁴⁴ qamma mənbələrindən alınan spektri

AD nöqtəsinə zərrəcik düşməsi halı üçün test təcrübəsi

Detektorun test edildiyi nöqtələr

AD nöqtəsində qarşılıqlı təsir zamanı, bütün detektorlardan eyni zamanda qeyd edilmiş siqnal spektrləri

Diqqətinizə görə minnətdaram!

Зависимост внутренного усиления от напряжения

Зависимости эффективност регистрация фотона от длиноволна света для МЛФД из компания SENSL

Зависимость эффективность регистрация фотонов от диаметр пикселей

МЛФД, работающие при напряжениях выше напряжения пробоя- в режиме Гейгера (ГЛФД)

Технология Hamamatsu, SENSL непозволяет изготавливать МЛФД с высокой плотностью ячеек высоким PDE (при 10 тыс. ячеек/кв.мм PDE<15%). Однако их технология позволяет получать очень быстрые времена восстановления ячейки.

Технология Zecotek позволяет изготавливать МЛФД с высокой плотностью ячеек (до 40 тыс. ячеек/кв.мм) и свысоким PDE(>20%). Однако МЛФД Zecotek имеют медлееные времена восстановления ячейки (95% восстанавливается за~1мксек). В этой технологии функцию гасящего индивидуального резистора выполняет искуственные потенциальные ямы

