ИЗУЧЕНИЕ ПРОЦЕССОВ $e^+e^- \rightarrow K^+K^-$ И $e^+e^- \rightarrow K_SK_L$ НА ДЕТЕКТОРЕ СНД

Константин Белобородов

по материалам апробации

Дубна 15.03.2017

Введение

Цель изучения процессов $e^+e^- \rightarrow K^+K^-$ и $e^+e^- \rightarrow K_SK_L$:

- > Точное измерение сечений процессов:
 - Исследование спектроскопия легких векторных мезонов ρ, ω, φ и их радиальных и орбитальных возбужденных состояний:

 $\rho', \omega', \phi', \rho'', \omega'', \phi'', \dots;$

• Дает вклад в полное сечение $e^+e^- \rightarrow hadrons$, которое используется для вычисления величин:

(g-2)_µ – аномального магнитного момента мюона;

- α_{em}(M_Z) электромагнитная константа связи на массе Z-бозона.
- Совместный анализ $e^+e^- \rightarrow K^+K^-$ и $e^+e^- \rightarrow K_SK_L$ позволяет:
 - Разделить изоскалярную A(I=0) и изовекторную A(I=1) амплитуды процесса: $\gamma^* \to K\overline{K}$
 - Tect CVC $(\tau^- \rightarrow K^- K^0 v_{\tau})$
- > Проверка новых аэрогелевых счетчиков на каонах
 - Исследование других процессов с каонами
- ▶ Процесс $e^+e^- \rightarrow K_S K_L$ используется как источник K_L :
 - Измерение ядерной неупругой длины в NaI
 - Проверка программ моделирования (UNIMOD, GEANT и т.д.)
 - Коррекция моделей для ядерного взаимодействия при малых импульсах K_L

Экспериментальное изучение процесса е⁺е[−]→K_SK_L с детектором СНД в интервале энергии 2E₀=1.04÷1.38 ГэВ

Эксперимент	год	2E, GeV	L, nb-1
ОЛЯ (ВЭПП-2М)	1982	1,06÷1,40	0,7
DM1 (DCI)	1981	1,40÷2,18	1,4
КМД2 (ВЭПП-2М)	2003	1,05÷1,4	9,0
BABAR (PEPII)	2014	1,08÷2,16	

Детектор СНД

1 --- вакуумная камера ВЭПП-2М, 2 --- трековая система, 3-5 --- внутренний сцинтилляционный счетчик, 6 --- кристаллы Nal(Tl), 7 --- вакуумные фототриоды, 8 --- железный поглотитель, 9-11 --- мюонная система, 12-13 --- элементы ВЭПП-2М

Калориметр СНД

- Телесный угол 90 % от 4π
- толщина 13,4 Х₀

 $\sigma_{\epsilon}/E(\%)$

- большая гранулированность 1632 кристала
- хорошее угловое и энергетическое разрешение

5

Эксперименты MHAD

* В обработке использовались данные с энергией 2E₀ ≥ 1,04 ГэВ

Некоторые особенности процесса $\mathrm{e^+e^-} ightarrow \mathrm{K}_{\mathrm{S}}\mathrm{K}_{\mathrm{L}}$

- 1. Основная часть событий содержит 4 кластера от распада К_s-мезона + кластеры от ядерного взаимодействия К_L-мезона в калориметре
- 2. Практически не содержит заряженных частиц
- 3. Возможны большие величины недостающей энергии и импульса в событии

Условия отбора

- 1. Нейтральный триггер
- $2. \ N_{NP} \geq 4$
- 3. $N_{CP} = 0$
- 4. Исключались события с найденным в калориметре космическим треком

•
$$\chi_1^2 < 25$$
 в гипотезе $K_S \rightarrow 2\pi^0 \rightarrow 4\gamma$

- * $\zeta_{\gamma} < 0$
- * $36^{\circ} < \theta_{\gamma} < 144^{\circ}$
- * 400< \dot{M}_{REC} <550 масса отдачи K_{S}
- $\chi_2^2 > 60$ в гипотезе $e^+e^- \to \pi^0 \pi^0 \gamma$

* – только для фотонов вошедших в реконструированный К_S-мезон

- ζ параметр «качества» фотона.
 Используется для подавления вклада кластеров от распадов или ядерного взаимодействия К_L-мезона
- M_{REC} масса отдачи K_{s} . Используется для подавления вклада процесса $e^{+}e^{-} \rightarrow K_{s}K_{L}\gamma_{ISR}$
- χ_2^2 позволяет подавить вклад процесса $e^+e^- \rightarrow \omega \pi^0$, $\omega \rightarrow \pi^0 \gamma$ и $e^+e^- \rightarrow \eta \gamma$, $\eta \gamma \gamma_{ISR}$

Оценка вклада фонов

Масса отдачи К_s-мезона

Эффективность регистрации $\varepsilon(E, E_{\gamma})$

$$\sigma_{vis}(E) = \sigma_0(E) \cdot \varepsilon(E) \cdot (1 + \delta(E)) \qquad \Longrightarrow \qquad \sigma_{vis}(E) = \int_0^1 dz \sigma_0(E(1-z))F(E,z)\varepsilon(E,zE)$$

Аппроксимация данных

Борновское сечение процесса $e^+e^- \rightarrow K_S K_L$

Систематические погрешности

Источники систематической ошибки:

 определение светимости эффективность регистрации определение фона 	2E ₀ :	1,04 ÷ 1,38 ГэВ 2 % 2,1 ÷ 2,5 % 0,4 ÷ 4,0 %
модельная зависимость		1,5 ÷ 2,5 %
Суммарная погрешность		3,3 ÷ 5,7 %

* Суммарная систематическая погрешность вычислялась как сумма независимых погрешностей

Сечение процесса $e^+e^- \rightarrow K_S K_L$

Заключение І

- Измерено сечение процесса $e^+e^- \to K_S K_L$ в интервале энергии 2E_0=1,04÷1,38 ГэВ с детектором СНД
- Наблюдается значительное превышение измеренного сечения процесса e⁺e⁻ → K_SK_L над предсказанием Модели векторной доминантности, учитывающей только наличие легких векторных мезонов ρ(770), ω(783) и φ(1020)
- Данное превышение может быть объяснено наличием возбужденных состояний ρ(770), ω(783) и φ(1020) мезонов

Измерение длины неупругого ядерного взаимодействия К_L-мезонов в калориметре на основе Nal(Tl)

Мотивация:

- Отсутствуют экспериментальные данные (К_L+Na,I) при низких импульсах
- Необходимость проверки программ моделирования (UNIMOD, GEANT4)
- ▶ Коррекция моделей

Существующие измерения:

- Принстон-Пенсильванский ускоритель (1967): измерение полного ядерного сечения К_L с Ве, С, Al, Fe, Cu, Pb и U в диапазоне импульса каона от 0.168 до 0.343 ГэВ/с
- 2. КМД2 (1996):

Полное ядерное сечение K_L с Be, p=0,114 ГэВ/с

Некоторые особенности процесса $\mathrm{e^+e^-} ightarrow \mathrm{K}_{\mathrm{S}}\mathrm{K}_{\mathrm{L}}$

- 1. Основная часть событий содержит 4 кластера от распада К_s-мезона + кластеры от ядерного взаимодействия К_L-мезона в калориметре
- 2. Практически не содержит заряженных частиц
- 3. Возможны большие величины недостающей энергии и импульса в событии

Взаимодействие К_L мезона с детектором СНД. Моделирование.

Метод восстановления длины неупругого взаимодействия K_L с NaI(Tl)

$$n_{\gamma=4} = \sum_{i=1}^{5} \varepsilon_{i,\gamma=4} n_i$$

$$n_{\gamma>4} = \sum_{i=1}^{5} \varepsilon_{i,\gamma>4} n_i$$

$$P_0(\lambda_{in}) = \frac{n_{\gamma=4}}{n_{\gamma=4} + n_{\gamma>4}} \qquad \Longrightarrow \qquad \lambda_{in}$$

 $\epsilon_{i,\gamma=4}$, $\epsilon_{i,\gamma>4}$ – эффективности регистрации событий $e^+e^- \rightarrow K_S K_L$ для i-го слоя

Учет упругого ядерного взаимодействия K_L с NaI(Tl)

Эффективная толщина калориметра

Восстановление длины неупр. яд.-ого взаим.-я К.

$$L_* = \int_{r_1}^{r_2} \frac{\lambda_0}{\lambda(r)} dr \qquad \sigma_{L_*} \approx L_* - L$$

Слой	L, см	L _* , см	$\sigma_*/L_*, \%$
I+II	20,00	20,71	3,5
III	14,70	16,45	11,2

	λ_{in} , см	$(\lambda_{in,c}-\lambda_{in})/\lambda_{in,c},\%$
SCATTER $(\lambda_{in,c})$	32,96	0,0
без поправки (L)	30,50	-7,5
с поправкой (L _*)	32,86	-0,3

Длина неупругого ядерного взаимодействия K_L в NaI(Tl). Моделирование.

На рисунке линиями представлена расчетная длина ядерного неупругого взаимодействия К_L мезона в NaI(Tl) в зависимости от энергии К_L мезона. Расчет выполнялся для трех различных величин сечений. Точками представлены результаты восстановления длины из полученных данных. Видно хорошее согласие. Длина неупругого ядерного взаимодействия K_L в NaI(Tl). Эксперимент.

На рисунке линией показана расчетная длина ядерного неупругого взаимодействия K_L мезона в NaI(Tl) в зависимости от энергии K_L мезона. Точками показаны полученные экспериментальные данные. Также показана полная ошибка (статистическая + систематическая) без риски. Систематическая ошибка показана с рисками. Видно хорошее согласие.

Учет энергетического спектра К_L мезонов.

Рис. 9. Распределения событий по энергии зарегистрированного K_Lмезона для различной энергии пучка.

Систематические ошибки

Таблица 4.4. Вклады в систематическую ошибку для трех значений энергии пучка.

Источник	$E_0 = 520$ МэВ	$E_0 = 640$ МэВ	$E_0 = 690$ МэВ
Вычитание фона	1.5	1.5	1.5
Эффективность	2.2	2.3	2.6
Немонохроматичность K_L -мезона	1.0	3.0	1.0
Неупругое яд. взаимодействие			
вне NaI(Tl)	3.4	3.4	3.4
Упругое яд. взаимодействие в NaI(Tl)	2.0	2.0	2.0
Наложения	1.0	1.0	1.0
Сумма	5.0	5.8	5.2

Длина неупругого ядерного взаимодействия K_L в NaI(Tl).

Сравнение эксперимента и UNIMOD

Рис. 13. Распределение событий по числу реконструированных фотонов. Рис. 14. Распределение энерговыделения K_L мезона в калориметре.

Сравнение эксперимента и UNIMOD

Рис. 15. Распределение событий по Рис. 16. распределение событий по полному нормированному энерго- полному нормированному импульвыделению. су.

Заключение II

- 1. Измерена длина ядерного неупругого взаимодействия К_L мезона в NaI(Tl) области энергии К_L мезона от 510 до 690 МэВ
- 2. Полученные данные согласуются с расчетами выполненными программой расчета ядерных сечений SCATTER
- 3. Полученные данные не согласуются с расчетами программы GEANT4(v9.5)
- 4. Данные согласуются с расчетами основанными на результатах измерений на Ве детектора КМД-2 и Принстон-Пенсильванского ускорителя

Измерение сечения процесса e+e- -> К+Кв диапазоне энергии от 1.05 до 2 ГэВ

Цель измерения e+e- → K+K-, предыдущие эксперименты

ВЭПП-2000, эксперименты

СНД (обновленный)

- 1 вакуумная труба
- 2 трековая система
- 3 аэрогелевые счетчики
- 4 кристаллы Nal(Tl)
- 5 фототриоды
- 6 мюонный поглотитель
- 7-9 внешняя система
- 10 фокусирующий соленоид

Основные улучшения по сравнения с предыдущим СНД:

- новая система черенковские счетчики (n=1.05, 1.13)
 - е/π разделение E<450 MeV
 - π/К разделение E<1 GeV
- новая дрейфовая камера

Тесты с аэрогелевым счетчиком (n=1.13) на экспериментальных событиях

Регистрация π и К

Условия отбора

Источники фонов

- 1. Коллинеарные фоны:
 - Космические события
 - Заряженные двух-частичные процессы (e⁺e⁻, μ⁺μ⁻, π⁺π⁻, p⁺p⁻)
- 2. Неколлинеарные процессы:
 - Заряженные много-частичные процессы ($\pi^+\pi^-\pi^o$, $\pi^+\pi^-\pi^o\pi^o$, КК π etc.)
 - Двух-фотонные процессы (е⁺е⁻, μ⁺μ⁻, π⁺π⁻)

Вычитание неколлинеарного фона

- Вклад неколлинеарного фона оценивался по угловым областям
- Коэффициент пересчета определялся по моделированию процессов e+e- -> 3π, 4π, K+K-π0, K+K-η
- Коэффициент равен единице с точностью 10%
- Для дальнейших вычислений данный фон вычитался из распределения E_{tot}/\sqrt{s}

Вычитание коллинеарного фона

Светимость

Эффективность отбора

Поправки к эффективности

Аппроксимация данных: модель

$$\sigma_{vis}(\sqrt{s}) = \int_{0}^{z_{max}} dz \, \sigma_0\left(\sqrt{s(1-z)}\right) F(z,s)\varepsilon(\sqrt{s},z)$$

Борновское сечение

Систематика

Источник	2011		2012	
	2E < 1.8 GeV	2E > 1.8 GeV	2E < 1.8 GeV	2E > 1.8 GeV
Светимость	1%	1%	1%	1%
Условия отбора	0.7 %	0.7 %	1.2 %	1.2 %
Вычитание фона	0.7 %	4.1 %	0.7 %	4.1 %
Ядерное взаимодействие	0.1 %	0.1 %	0.1 %	0.1 %
Рад. поправка	0.1 %	0.1 %	0.1 %	0.1%
Общая	1.4 %	4.3 %	1.7 %	4.4 %

Систематика

47

Заключение III

- ✓ Измерено сечение процесса е+е- → K+К-
- ✓ Сечение е+е- → К+К- не противоречит прецизионному измерению на детекторе БАБАР, имеет сравнимую или лучшую точность
- Система идентификации на основе аэрогелевых счетчиков готова к использованию в анализе данных
- Система идентификации используется для анализа других процессов, содержащих заряженные каоны

Основные положения, выносимые на защиту

- В эксперименте с детектором СНД на e⁺e⁻ коллайдере ВЭПП-2М измерено сечение процесса e⁺e⁻ → K_SK_L в области энергий в системе центра масс от 1.04 ГэВ до 1.38 ГэВ. Несмотря на то, что измерение сделано 10 лет назад, оно не уступает по точности более поздним измерениям.
- В эксперименте с детектором СНД на e⁺e⁻ коллайдере ВЭПП-2000 измерено сечение процесса e⁺e⁻ → K⁺K⁻ в области энергий в системе центра масс от 1.05 ГэВ до 2.0 ГэВ. На сегодняшний день это самое точное измерение сечения e⁺e⁻ → K⁺K⁻ в указанной области энергий.
- 3. В эксперименте с детектором СНД на e⁺e⁻ коллайдере ВЭПП-2М измерена длина неупругого ядерного взаимодействия K_L мезона в NaI(TI) в диапазоне энергий K_L мезона от 510 МэВ до 690 МэВ. Это первое измерение энергетической зависимости неупругой ядерной длины K_L мезона при низких энергиях.

Публикации по теме:

- 1) M.N. Achasov, ..., K.I. Beloborodov et al. Experimental Study of the Reaction $e^+e^- \rightarrow K_S K_L$ in the Energy Range $\sqrt{s} = 1.04$ GeV. J. Exp. Theor. Phys. **103** 720 (2006).
- 2) M.N. Achasov, ..., K.I. Beloborodov et al. Measurement of the $e^+e^- \rightarrow K^+K^-$ cross section in the energy range $\sqrt{s} = 1.05 - 2.0$ GeV. Phys. Rev. D 94, 112006 (2016).
- M.N. Achasov, ..., K.I. Beloborodov et al. Measurement of the K_L nuclear interaction length in the NaI(Tl) calorimeter. JINST 10, P09006 (2015).
- M.N. Achasov, ..., K.I. Beloborodov et al. Proc. of the Int. Workshop "e⁺e⁻ Collisions from φ to J/ψ". Novosibirsk, 1999, p. 196.
- 5) K.I. Beloborodov. Experimental study of the $e^+e^- \rightarrow K^+K^-$ process cross section with the SND detector at the VEPP-2000 e^+e^- collider. Journal of University of Science and Technology of China, **46**, 279 (2016).
- 6) K. I. Beloborodov et al. CVC test in $e^+e^- \to K\overline{K}$ and $\tau^- \to K^-K^o\nu_{\tau}$ processes. Nucl. Phys. Proc. Suppl. 181-182, 306 (2008).