

Nuclotron-based Ion Collider fAcility

PWG4 summary

V. Riabov hadron shower \mathbf{e}^{\pm} , γ

Status & structure

- Regular PWG4 meetings since Feb, 2019
 - ✓ https://mpdforum.jinr.ru/c/electromagnetic-probes
- PWG4 scope electromagnetic probes:
 - ✓ electromagnetic calorimeter (ECAL) reconstruction software
 - \checkmark reconstruction of photons and neutral meson
 - \checkmark dielectron continuum and LMR
 - \checkmark estimation of direct photon yields and flow
- Conveners: V. Riabov, Chi Yang
- Talk outline: most recent results and activities

ECAL acceptance

ECAL geometry, today

- Full configuration: (25 sectors in azimuth with full pseudorapidity coverage; 50 half-sectors)
- Most probable acceptance for year-1: 8 sectors \rightarrow optimization of geometry configuration

Sampling fraction for π^0 and η

 π^0 fractional efficiencies: UrQMD, BiBi@9.46, realistic vertex distribution

η fractional efficiencies: BiBi@9.46, realistic vertex distribution

• Loss of efficiency is >> than just a geometrical factor of 0.32, especially at $p_T < 1-2$ GeV

- Options 4 5 are the most balanced for neutral meson measurements:
 - ✓ open up acceptance at low p_T , ~ 50 MeV/c for π^0 and ~150-200 MeV/c for η → sample most of p_T spectrum
 - \checkmark moderate efficiency at intermediate p_T

MPD Collaboration Meeting VII

Reconstruction of π^0 , low p_T

- UrQMD, 10M minbias BiBi@9.46, realistic vertex distribution
- Same statistics for all options

- Options #4 #5 provide better signal significance at $p_T \sim 100 \text{ MeV/c}$
- Measurement of neutral meson is possible, but very significant loss of efficiency at low momentum

Acceptance for dielectrons

- ECAL is used to identify tracks that are matched to the ECAL clusters (E/p, time-of-flight)
- ECAL acceptance does not affect the (di)electron efficiency, only purity & efficiency
- Fractional yields: UrQMD, BiBi@9.46, smeared vertex, $p_T^{single e\pm} > 200 \text{ MeV/c}$

- Fractional efficiencies > 1, ECAL reduces e^{\pm} detection efficiency, but improves purity
- No obvious difference observed for Options #1,2,3 (4-6)

Dielectron M_{inv} spectra

• M_{ee} yields: UrQMD, BiBi@9.46, smeared vertex

 M_{ee} measured/reconstructed with eID in the TPC&TOF&ECAL; M_{ee} true electrons: among them M_{ee} with π^0 Dalitz, M_{ee} with conversion, M_{ee} with η Dalitz

• No obvious difference between the Options #1,2 (3-6) MPD Collaboration Meeting VII

Summary

- Acceptance for neutral meson measurements is strongly reduced at low p_T
- Options # 4,5 look most promising for neutral mesons \rightarrow day-1 measurements
- All options have similar effect for dielectron measurements

Dielectron continuum and LVMs

New Monte Carlo production

- Request11: *PWG4 dielectrons*, 15M minbias BiBi@9.2
- The production has been finished a few weeks ago
- Aims at dielectron studies but good for most of other analyses
- Features (what's different compared to previous dielectron productions):
 - ✓ latest MpdRoot version with the updated materials, detector response and reconstruction algorithms
 - ✓ realistic dE/dx calculations with Geant-4
 - ✓ dphi, dzed variables for better track-to-TOF matching
 - ✓ most probable first collision system, <u>BiBi@9.2</u>
 - ✓ high statistics, 15 M events
- Output data:
 - /eos/nica/mpd/sim/data/exp/dst-BiBi-09.2GeV-mp02-21-500ev/BiBi/09.2GeV-mb/UrQMD/BiBi-09.2GeV-mp02-21-500ev/
 - ✓ 30,000 DST files
- Thanks to Andrey Moshkin !!!

Ongoing studies

- Optimization of track and eID selection cuts:
 - ✓ more differential DCA parameterizations
 - \checkmark better control over the track-to-TOF matching
 - \checkmark better treatment of eID in the TPC, TOF and ECAL
- Optimization of pair selection cuts:
 - \checkmark rejection of conversion track candidates
 - ✓ rejection of Dalitz decay track candidates
- Criteria of optimization:
 - ✓ larger statistical significance of signals \rightarrow smaller statistical uncertainties
 - ✓ higher S/B ratio \rightarrow smaller systematic uncertainties from background normalization
- Signals:
 - ✓ LM region 0.2-0.6 GeV/ c^2
 - ✓ LVM: Omega, Phi

DCA to primary vertex

- DCA cuts are used to select primary particles and reject background from secondary and γ conversion
- Examples of DCAx(y) distributions for charged particles, pions, kaons, protons and electrons, normalized to have the same maximum

- DCA distributions show clear p_T, centrality and rapidity dependence
- DCA was parameterized as a function of p_T, centrality and rapidity for inclusive charged particles and then normalized for n-sigma selections
- The width of DCA distributions shows PID dependence at $p_T < 400 \text{ MeV/c} \rightarrow \text{tighter DCA cuts give}$ preference to electron selection at low p_T (for primary particles)
- The width of DCA selections is optimized for better signal significance and smaller S/B

eID capabilities

- TOF: $\beta = v/c \sim 1$, $p_T > 150 \text{ MeV/c}$ TPC: ln(dE/dx)n(dE/dx) (a.u. 2σ selections for e^{\pm} 2σ selections for e^{\pm} and π^{\pm} 10⁶ 1.1 <mark>_</mark> 10⁵ Tracks: 10⁵ # of hits > 39 10⁴ 0.9 10⁴ $|\eta| < 1$ 1.5 10³ 0.8 $|DCA_x,y,z| \le 3 \sigma$ 10³ 2 2 **2** 2 2 2 2 2 0.7 10² 10² 0.6 10 10 0.5 0.2 0.4 0.6 0.8 1.2 14 1.8 0.8 1.6 1.8 p (GeV/c) Momentum (GeV/c)
- ECAL: time-of-flight ($\delta \sim 500 \text{ ps}$) and E/p ~ 1 for 2σ -matched tracks

- \checkmark turns on at p_T > 200 MeV/c
- ✓ TOF ([-3 σ ,2 σ]) & E/P ([-3 σ ,2 σ]) cuts provide high eID efficiency in a wide p_T range

Track-to-TOF matching distributions in TOF vs. $\ensuremath{p_{T}}$

• Track-to-hit distance in the TOF (or *distance* = 1/weight) vs. p_T , minbias BiBi@9.46

• Matching distributions are very wide

Track-to-TOF matching distributions vs. p_T

- Selected tracks:
- Default track-to-TOF matching cut is |*distance*| < 7 cm
- $\checkmark \text{ hits > 39} \\ \checkmark |\eta| < 1$
 - $|DCA_x,y,z| < 3 \sigma$
- Split *distance* to dphi and dzed and then parameterized matching distributions for all charged tracks vs. p_T

- 2σ bands are shown with black lines
- Do not observed a significant charge dependence of $d\phi$
- Selection of n-sigma matching cuts is analysis dependent

dE/dx with TOF selections

- Selected tracks:
 - \checkmark hits > 39
 - ✓ $|\eta| < 1$
 - ✓ $|DCA_x,y,z| < 3 \sigma$
 - ✓ Default matching to TOF + 2σ TOF-eID

- Selected tracks:
 - \checkmark hits > 39
 - ✓ $|\eta| < 1$
 - ✓ $|DCA_x,y,z| < 3 \sigma$
 - ✓ 2σ matching to TOF + 2σ TOF-eID

- 2σ matching reduces background from wrong association of tracks and TOF hits
- Background remains anyway, including $\beta > 1$ tail
- Dashed lines show the cuts which improve separation of pions and electrons at the expense of lower efficiency

Efficiency and purity

- Selected tracks:
 - \checkmark hits > 39
 - $\checkmark |\eta| < 1$
 - ✓ $|DCA_x,y,z| < 3 \sigma$

- \checkmark 2 σ matching to TOF
- ✓ 1-2 σ TPC-eID
- ✓ 2σ TOF-eID

• New production: BiBi@9.2, realistic vertex

Conversion rejection

- Form pairs:
 - \checkmark track #1 passes tight track selection and eID cuts (same as in dielectron analysis)
 - ✓ track #2 passes loose track selection and e-ID cuts
- Selections for conversion pairs:
 - ✓ Chi2 for the secondary vertex, pointing angle, DCA for e^{\pm} , distance to PV, invariant mass
- Once pair is consistent with $\gamma \rightarrow ee \rightarrow$ both tracks are tagged as a conversion pair candidates and then rejected from the analysis
- minbias BiBi@9.45 events

- Rejection of conversion candidates improves S/B by a factor of 2
- ✓ Signal significance also improves

Dalitz decay rejection

• Pair each electron track candidate with all positron track candidates in the event

- A cut of M > 100 MeV/c^2 improves the S/B and signal significance
- Further improvements in S/B are at the expense of smaller statistical significance
- The cut is a source of systematic uncertainties, which are difficult to control and evaluate

Examples of dielectron M_{inv} spectra, p_T integrated

• 15 M minbias BiBi@9.2 events

Summary for dielectrons

- Optimization of techniques for extraction of dielectron signals is ongoing
- Obtained results look promising
- Meaningful measurements for e⁺e⁻ continuum and LVMs would require ~ 10⁸ AuAu/BiBi sampled events, first observations will be possible with ~50 M events

Photon conversion method (PCM)

Reconstruction of photons with PCM, disadvantages

• Photons can be measured in the ECAL or in the tracking system as e⁺e⁻ conversion pairs (PCM):

- Only < 4% of photons convert, < 2% of photons is reconstructed
- Efficiencies for neutral mesons are on sub-percent level, ~ $0.15 \cdot 10^{-4}$
- Low statistics is the main disadvantage of the PCM method

Reconstruction of photons with PCM, advantages

PCM resolution for photons and neutral mesons is much better compared to the ECAL

• High energy resolution and photon purity are the main advantages of the PCM method

Reconstruction of neutral mesons with PCM

• Pair photons reconstructed with PCM: $\pi^0 \rightarrow \gamma (\gamma \rightarrow e^+e^-) + \gamma (\gamma \rightarrow e^+e^-)$

• Expected π^0 yields for 10^7 AuAu@11 events

- Statistics hungry analysis
- Provides a good cross check for ECAL measurements
- Hybrid analysis of $\pi^0(\eta) \rightarrow \gamma (\gamma \rightarrow e^+e^-) + \gamma$ (ECAL) is

possible and looks promising \rightarrow See talk by D. Peresunko

Direct photons

Sources and estimations

- Direct photons photons not from hadronic decays.
- Produced throughout the system evolution:
 - ✓ QCD matter is transparent for leptons, once produced they leave the interaction region unaffected preserving their properties
 - $\checkmark\,$ estimation of the 'effective' system temperature at low E
 - \checkmark hard scattering probe at high E

Estimation of the direct photon yields @NICA

See talk by D. Blau

- UrQMD v3.4 with hybrid model (3+1D hydro, bag model EoS, hadronic rescattering and resonances within UrQMD)
- \circ $\;$ Each cell have Ti, Ei, $\mu bi:$
 - T is high QGP phase (Peter Arnold, Guy D. Moore, Laurence G. Yaffe, JHEP 0112:009 2001)
 - T is low HG phase (Simon Turbide, Ralf Rapp, Charles Gale, Phys.Rev.C69:014903,2004)
 - T is intermediate –mixed phase
- Integrate over all cells and all time steps
- \circ $\,$ Calculations reproduce hydro calculations for the SPS $\,$

MPD Collaboration Meeting VII

Expected yields of direct photons

Estimation of the direct photon yields @NICA

• R γ estimations vary from 5% to 15% at $p_T > 0.5$ GeV/c at top NICA energies

• Estimations for direct photon yields and flow vs. centrality and collision energy \rightarrow See talk by D. Blau

Comparison to RHIC/LHC

- R $\gamma \sim 1.1$ -1.2 in heavy-ion collisions at RHIC and the LHC, $\sqrt{s_{NN}} = 39$ -2760 GeV
- $R\gamma \sim 5\%$ is on the verge of experimental measurability (PHENIX in pp/pA@200, $\ge 3\sigma$)

- Experimentally photons can be measured with the ECAL and/or PCM
- Measurements of direct photon yields and flow are going to be challenging but yet possible
- Development of reconstruction techniques and estimation of needed statistics are in progress,

Summary

- PWG4 is active and works to enhance the MPD physical program
- Many studies are in progress
- Many vacant tasks, need extra man power and deeper involvement of the collaboration
- Contact conveners if you wish to join:
 - ✓ Victor Riabov <u>riabovvg@gmail.com</u>
 - ✓ Chi Yang <u>chiyang@rcf.rhic.bnl.gov</u>

BACKUP

eID efficiency: STAR

 $\begin{aligned} \varepsilon_{\rm eID} &= \varepsilon_{\beta} \times \varepsilon_{\rm dEdxPID} \\ \varepsilon_{\rm dEdxPID} &= \varepsilon_{\rm ndEdx} \times \varepsilon_{\rm n\sigma_e} \end{aligned}$

- Single eID efficiency at $p_T > 200 \text{ MeV/c} (\text{STAR}): \sim 0.45 \cdot (0.93-0.75) = 30-40\%$
- The MPD TPC-TOF-ECAL single eID efficiency with tight cuts is comparable

p_T-differential direct photon yields

- Universal scaling of p_T-differential direct photon yields at moderate p_T is observed at RHIC/LHC
- It can be used to predict p_T spectra of direct photons at NICA energies for p_T > 0.6 GeV/c
- Switch to thermal spectrum at p_T < 0.6 GeV/c: dN/dp_T ~ p_T exp(-p_T/T)
- Using conservative effective temperature T = 150 MeV (see e.g. PRC 93 (2016) 054901)

DCA vs. PID, primary particles

• Width of DCA_x,y and DCA_z distributions vs. p_T for charged particles, pions and electrons

- All the differences between $e/\pi/K/p$ are at very low momentum (~25%)
- At $p_T > 0.4$ GeV/c there is no difference between particles (except for protons)
- Tighter DCA cuts give some preference to electron selection at low p_T (for primary particles)

Problem of TOF-TPC track mismatching

MPD

- Both STAR and MPD observe non-physical TOF signals with $\beta > 1$,
- Unphysical signals are most prominent in central collisions, diminished in peripheral
- Effect is explained by track mismatching in the TOF

DCA vs. radius, electrons

• Production radius of e⁺e⁻ pairs with different DCA_xyz cuts

- DCA cuts do not reject conversion at beam pipe
- DCA cuts reject most of conversion on the TPC vessels