Измерение иерархии масс и фазы CP нарушения в лептонном секторе в нейтринном эксперименте NOvA

Liudmila Kolupaeva

JINR, MSU

 $17\ {\rm March}\ 2017$

Neutrinos

Neutrinos mix like quarks (but mixings are large):

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$

$$i = 1, 2, 3$$
 $\alpha = e, \mu, \tau$

Nobel Prize 2015

was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass".

Breakthrough 2016

- * Daya Bay (China)
- * SNO (Canada)
- * Super-Kamiokande (Japan)
- * KamLAND (Japan)
- * K2K/T2K (Japan)

Motivations to study neutrino oscillations

- * One of the most wide spread particle in the Universe
- * Many open questions:
 - * Dirac or Majorana nature
 - * Neutrino masses themselves
 - * Measurement of θ_{13} (Complete. Reactor experiments result)
 - * Mass Hierarchy Problem
 - * CP violating phase

NOvA goals

- * Precise measurements of oscillation parameters
- * Sterile neutrinos
- * Understanding fundamental principals of all these phenomena
- * ...

Why is it important?

* neutrino mass hierarchy

Implications for: $0\nu\beta\beta$ data and Majorana nature of ν ; approach to m_β ; cosmology; astrophysics; theoretical frameworks for mass generation, quark/lepton unification; Is the lightest charged lepton associated with the heaviest light neutrino?

* CP violation

baryon asymmetry through see-saw/leptogenesis; fundamental question in the Standard Model (is CP respected by leptons?)

* ν_3 flavor mixing

Is ν_3 more strongly coupled to μ or τ flavor?; frameworks for mass generation, unification

Theory of neutrino oscillations

$$\begin{vmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{vmatrix} = \begin{pmatrix} 1 \\ c_{23} \\ -s_{23} \\ -s_{23} \\ c_{23} \end{vmatrix} \begin{pmatrix} c_{13} \\ s_{13}e^{-i\delta} \\ -s_{13}e^{i\delta} \\ c_{13} \end{pmatrix} \begin{pmatrix} c_{12} \\ s_{12} \\ -s_{12} \\ c_{12} \\ c_{12} \\ s_{12} \\ -s_{12} \\ c_{12} \\ c_{12} \\ s_{12} \\ c_{13} \\ c_{12} \\ c_{13} \\ c_{13}$$

$\begin{aligned} \Delta m_{32}^2 &= m_3^2 - m_2^2 \\ \simeq 2.5 \times 10^{-3} \text{ eV}^2 \end{aligned}$	$\Delta m_{31}^2 \simeq \Delta m_{32}^2$	$\begin{array}{l} \Delta m_{21}^2 = m_2^2 - m_1^2 \\ \simeq 7.5 \times 10^{-5} \ \mathrm{eV}^2 \end{array}$
$ u_{\mu} ightarrow u_{\mu}$	$\nu_e \rightarrow \nu_e$	$ u_e ightarrow u_e$
$ u_{\mu} ightarrow u_{ au}$	$ u_{\mu} ightarrow u_{e}$	$ u_e ightarrow u_\mu, u_ au$
atmospheric and	reactor and	solar and
long baseline	long baseline	reactor

Oscillation parameters: $\theta_{12}, \theta_{23}, \theta_{13}$, CP phase δ , $|\Delta m_{13}^2|$, Δm_{12}^2

L. D. Kolupaeva

Oscillation Probability

 ν_{μ} Disappearance:

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \underbrace{\sin^2 2\theta_{23}}_{4E} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)$$

maximal mixing

leading order, no matter effect, no CP violation terms ...

 ν_e Appearance:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E}\right)$$
$$\sin^{2} 2\theta_{13} = 0.084 \pm 0.005$$

Oscilation Probability in matter (approximate formula):

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\approx \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2} \Delta(1-A)}{(1-A)^{2}} + \alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2} \Delta A}{A^{2}} \\ &+ \alpha \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \left(\Delta \pm \delta_{CP}\right) \frac{\sin \Delta A}{A} \frac{\sin \Delta(1-A)}{(1-A)} \\ &\alpha &= \frac{\Delta m_{21}^{2}}{\Delta m_{32}^{2}}, \quad \Delta \equiv \frac{\Delta m_{31}^{2} L}{4E}, \quad A \equiv \pm \frac{G_{f} n_{e} L}{\sqrt{2}\Delta} \end{split}$$

The NuMI Off-Axis ν_e Appearance Experiment. Goals

NOvA experiment goals :

Using $\nu_{\mu} \to \nu_e \ (\overline{\nu}_{\mu} \to \overline{\nu}_e)$

- * neutrino mass hierarchy
- ✤ CP violating phase

Using $\nu_{\mu} \rightarrow \nu_{\mu} \ (\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu})$

- * precision measurement Δm_{32}^2
- * mixing angle θ_{23} octant (more 45° or less).

Also exotics:

sterile neutrino, supernova, neutrino cross section measurements in Near Det., monopoles etc.

Neutrinos at the Main Injector (NuMI)

Fermilab Accelerator Complex 2020

Initial neutrino flux production

- # 120 GeV protons on the carbon target
- * NOvA designed power is 700 kW NuMI beam, it is 6×10^{20} POT/year (POT = Proton On Target)
- ★ we are running at 700 kW now!
- * horns are pulsed at -200 kA (+200 kA for antineutrinos)
- * every 1.3s 6 doubled batches of protons get the target (1 beam spill). 1 spill is 10 us.

Recorded POT and Far Detector Dataset

- During the construction era, NOvA began collecting physics data with each Far Detector "diblock" (64 detector planes) as soon as it was fully commissioned and physics-ready

calendar hour (kW)

Power per

150

Data

15 / 48

Off-axis detector scheme

For π decay-in-flight, E_{ν} dependent on angle π decay and ν interaction. Off-axis have flat E_{π} dependence.

Achieves near maximal oscillation

Suppresses high energy tail

14 mrad off-axis

Two NOvA detectors - huge tracking calorimeters

Two detector scheme

Near Detector (ND):

- $\ast~1~{\rm km}$ after target
- * measure flux composition before oscillations
- * ND data used for prediction data in FD (extrapolation procedure)

Far Detector (FD):

- $\#~810~{\rm km}$ after target
- * measure neutrino flux after oscillations
- * extrapolation cancels most systematics
- * FD identical to ND

Two NOvA detectors - huge tracking calorimeters

Simulation

- * Beam hadron production, propagation; neutrino flux: FLUKA/FLUGG
- ✤ Cosmic ray flux: CRY
- * Neutrino interactions and FSI modeling: GENIE
- ✤ Detector simulation: GEANT4
- * Readout electronics and DAQ: Custom simulation routines

Simulation: Locations of neutrino interactions that produce activity in the Near Detector NOvA Simulation 10 Near Detecto viewed from above Interaction Vertex, XZ Viewlinear scale (m) X -5 -10 -20 -10 0 Z (m)

L. D. Kolupaeva

Extrapolation to Far Detector

- * Estimate true energy distribution of selected Near Detector events
- \ast Multiply by expected Far/Near event ratio and oscillation probability as a function of true energy
- * Convert FD true energy distribution into predicted FD reco energy distribution
- $\ast\,$ Systematic uncertainties assessed by varying all MC-based steps

ν_{μ} Disappearance. Results. See Oleg Samoylov seminar

Selecting Electron Neutrinos. Cosmic rejection.

Select ν_e CC events

* with electromagnetic showers

* suppress background and cosmic Basic cuts:

- ✤ Fiducial and Containment cuts
- ✤ Shower length
- ★ Calorimetric energy
- * Number of hits
- * Reconstructed p_T/p

Expected cosmic background: 0.5 events

NOvA Preliminary

Selecting Electron Neutrinos

- * features a new technique based on ideas from computer vision and deep learning
- * "Convolutional Visual Network" (CVN)
- ✤ Input: Calibrated hit maps
- * Image processing transformations \rightarrow abstract features
- * Network decides important features + correlations
- ✤ Output: event classifier

ν_e Appearance. CVN and Near Detector Data

ND: select 3 components: beam ν_e CC, ν_{μ} CC,NC

Correspond to 3 FD backgrounds

Translate ND data to a FD bkgd. expectation in energy x PID bins using Far/Near ratios from simulation

Data driven background prediction. Near Detector.

NOvA Preliminary

- $\sim 10\%$ excess of data over MC *
- beam composition in the ND: ν_{μ} CC, ν_{e} CC and NC source of bkg in FD
- each component oscillates independently *

Solution in SA: 2 decomposition techniques

NOvA experiment

ν_e CC component.

- * ν_e CC from muon decay (from K^+ or π^+)
- * π^+ low E, K^+ high E
- $\ast\,$ correct pion and kaon yields in MC
- * output weights : Kaon yield is higher by 17%
 Pion yield lower by 3%

Cause +1% increase in ν_e CC

- * look for Michel electrons associated with interactions
- * ν_{μ} CC should have +1 additional ME than ν_{e} CC and NC
- * fit analysis bins with fixed ν_e CC from the previous page

Cause increase of 17.4% in ν_{μ} CC and 10.4% in NC

Result in the Near Detector.

Both these techniques give :

NOvA Preliminary

So we have near detector beam composition now.

ν_e Appearance. Systematic Uncertainties and Background

- * Considered multiple possible sources of systematic error
- $\ast\,$ Propagate shifts through to update FD prediction
- * Total 5% error on signal, 10 % on bkg.
- * Dominated by statistical error

Signal prediction:

* Signal depends on oscillation parameters

IH,
$$\delta_{CP} = \pi/2$$
 NH, $\delta_{CP} = 3\pi/2$

 19.4
 36.4

- * Expect about 8.2 background event
- * Backgrounds dominated by Beam ν_e and NC events
- * Background has small variation with oscillation parameters

Total bkg.
 Beam
$$\nu_e$$
 NC
 ν_{μ} CC
 ν_{τ} CC
 Cosmic

 8.2
 3.1
 3.7
 0.7
 0.1
 0.5

(8.2 expected background)

- * Observe 33 events passing ν_e selection
- * Towards the higher end of expectations

ν_e Appearance Result. Fit.

* Fit ν_e only spectra

Not very informative yet

ν_e Appearance Result. Joint Fit.

- * Joint fit $\nu_e + \nu_\mu$ spectra, FC corrections applied
- * two degenerate points in NH: $\sin^2 \theta_{23} = 0.404 \quad \delta_{CP} = 1.48\pi$ $\sin^2 \theta_{23} = 0.623 \quad \delta_{CP} = 0.74\pi$
- * prefer NH, not statistically significant $\Delta\chi^2 = 0.46$
- * exclude region in IH, lower octant, around $\delta_{CP} = \pi/2$ at 3σ
- * exclude IH at LO at greater than 93% C.L. for all values of δ_{CP}

L. D. Kolupaeva

First Analysis Epoch (2015 year):

- * First measurement of electron neutrino appearance in NOvA (arXiv:1601.05022)
- * First measurement of muon-neutrino disappearance in NOvA (arXiv:1601.05037)

Second Analysis Epoch (2016 year):

- * Measurement of the neutrino mixing angle θ_{23} in NOvA (arXiv:1701.05891)
- * Constraints on oscillation parameters from ν_e appearance and ν_{μ} disappearance in NOvA (arXiv:1703.03328)
- * NC result paper very soon

Third Analysis - this summer

JINR participation in NOvA

	Tasks	FTE		Tasks	FTE
Allakhverdian, A.	ND Physics	0.4	Kuzmin, K.	DetSim, theory	0.1
Amvrosov, V.	Numu osc, learning	0.1	Kuznetsov, E.	Computing, hardware	0.1
Anfimov, N.	DetOps, test stand	0.3	Morozova, A.	Exotics, CR muons	0.3
Antoshkin, A.	DetOps, test stand	0.3	Naumov, V.	DetSim, theory	0.3
	Exotics, slow monopole	0.3	Olshevskiy, A.	CollManagement, IB-rep	0.5
	DetControl, ROC-liaison	0.1	Petrova, O.	Exotics, CR muons	0.7
Balashov, N.	Computing	0.3		DetSim, theory calculation	0.3
Baranov, A.	Computing, cloud	0.1	Samoylov, O.	DetSim, co-convener	0.5
Bolshakova, A.	Reco, proton ID	0.5		DetControl, ROC-manager	0.3
	DetSim, ADC thresholds	0.5		JINR analyses coordination	0.1
Bilenky, S.	Osc., theory	0.1		CollManag, deputy at JINR	0.1
Dolbilov, A.	Computing, emergency	0.1	Sheshukov, A.	DAQ, software and support	0.3
Kakorin, I.	DetSim, GENIE	0.5		DDT, SN trigger	0.3
Klimov, O.	Reco, proton ID	0.6		Exotics, SN detection	0.3
Kolupaeva, L.	Nue osc analysis	0.8		DetControl, ROC software	0.1
	Software, release manager	0.2	Sotnikov, A.	DetOps, test stand	0.1
Krumstein, Z.	DetOps, supervision	0.1	Velikanova, D.	DetOps, test stand	0.1
Kullenberg, C.	ND Physics, coh pions	0.6	TOT 22 people		10.3

22 heroes in all essential parts of the experiment

Future

NOvA proposed sensitivity (2014 year): 3 years neutrino and 3 years antineutrino run, totaly $36 \cdot 10^{20}$ POT

So $< 2\sigma$ for CPV and $\sim 3\sigma$ for mass hierarchy for some values of δ_{CP} ($\pi/2$ and $3\pi/2$)

Future

And now we estimate our sensitivity in the next way: assume running till 2024 with 54e20 POT

Competition with other experiments: MH: JUNO 2σ in 2021 and ORCA 3σ in 2022 CP: T2K 2σ in 2021 and 3σ in 2024

- * Analysis with 6.05 $\cdot 10^{20}$ POT, 33 ν_e CC events in FD
- * First joint fit of NOvA appearance and disappearance data (paper already in arxiv)
- \stackware Weak preference for normal hierarchy
- * Inverted hierarchy, lower octant is disfavoured at >93% C.L.
- * NOvA run in antineutrino mode
- * Stay tuned!

The next talk devoted to NOvA:

Andrey Sheshukov

"Экзотические анализы в эксперименте NOvA"

5 April 2017

Нейтрино от сверхновых

- * Магнитные монополи
- * Темная материя
- * Атмосферные мюоны
- * и многое другое...

