Hard processes at NICA: cross sections, spectra and spin effects

V. Saleev^{1,2,*}

¹ Samara National Research University ² Joint Institute for Nuclear Research

> 8-10 June 2021 JINR, Dubna

(*) In collaboration with: M. Nefedov, A. Karpishkov, A. Shipilova

Hard processes at NICA: cross sections, spectra and spin effects

Outline

- I Hard processes at SPD NICA
- Factorization for hard processes: collinear, TMD, high-energy
- Oharmonium production
 - Cross sections and spectra
 - Polarized J/ψ production
 - Transverse Single Spin Asymmetries, $A_N(p_T, x_F)$
 - Longitudinal Spin Asymmetries, $A_{LL}(p_T, x_F)$
- $\bigcirc D-meson$ production
 - Cross sections and spectra
 - Transverse Single Spin Asymmetries $A_N(p_T, x_F)$
- In Prompt photon production
 - Cross sections and spectra
 - Transverse Single Spin Asymmetries
 - Longitudinal Spin Asymmetries
- Occusions / Future plans

Hard processes at SPD NICA

Charmonium production: η_c , J/ψ , $\psi(2S)$, χ_{cJ}

at $0 \le p_T \le 4$ GeV and |y| < 3

D-meson production at $0 \leq p_T \leq 4$ GeV and |y| < 3

Prompt photon production at $3 \le p_T \le 6$ GeV and |y| < 3

All these processes are originated dominantly from gluon-gluon fusion or gluon-quark scattering

$$\begin{array}{ll} g+g\rightarrow c+\bar{c}, & c\rightarrow D\\ \\ g+g\rightarrow c+\bar{c}+g, & c\bar{c}\rightarrow J/\psi\\ \\ & q+g\rightarrow q+\gamma \end{array}$$

SPD gluon program: study collinear and TMD gluon PDFs, gluon spin structure functions, ...

Factorization for hard processes: Collinear Parton Model, TMD-factorization, HEF

Collinear Parton Model

$$\begin{aligned} \sigma(pp \to hX) &= \sum_{i,j=g,q,\bar{q}} \int dx_1 \int dx_2 f_i(x_1,\mu^2) f_j(x_2,\mu^2) \hat{\sigma}^{CPM}(ij \to hk, x_1 x_2 s) \\ q_1^{\mu} &= x_1 P_1^{\mu}, \quad q_{1T} = 0, q_1^2 = 0 \end{aligned}$$

TMD-factorization (CSS model)

$$\begin{split} \sigma(pp \to hX) &= \sum_{i,j=g,q,\bar{q}} \int dx_1 \int dx_2 F_i(x_1, \vec{q}_{1T}, \mu^2, \zeta_1) \times \\ &\times F_j(x_2, \vec{q}_{2T}, \mu^2, \zeta_2) \hat{\sigma}^{TMD}(ij \to hk, x_1 x_2 s) \\ q_1^{\mu} &= x_1 P_1^{\mu} + y_1 P_2^{\mu} + q_{1T}^{\mu}, \quad q_{1T}^{\mu} \neq 0, \quad q_1^2 = 0 \end{split}$$

Factorization for hard processes: Collinear Parton Model, TMD-factorization, HEF

SPD NICA kinematical conditions for c-quark production processes

$$p_T \leq 3 - 4 \text{ GeV}, \quad \mu \simeq m_h(m_D, m_\psi, ..)$$

Collinear Parton Model works well at $p_T \ge \mu$, it has divergence at $p_T \to 0$

The CSS model (TMD) is applicable when $p_T \ll \mu$.

For most future data $p_T \sim \mu,$ where predictive power of CPM and CSS is under the question

- To use Generalized Parton Model, $F(x, \vec{q}_T, \mu) = f(x, \mu) \times G(\vec{q}_T)$
- To use CPM (in LO+NLO+..) with cut $p_T > p_{T,min} \approx 2-3$ GeV
- To use an approach which smoothly interpolates between regions $p_T << \mu$ and $p_T > \mu$

Factorization for hard processes: Collinear Parton Model, TMD-factorization, HEF

Parton Reggeization Approach is based on HEF and smoothly interpolate between regions $p_T << \mu$ and $p_T \geq \mu$

$$\begin{aligned} \sigma(pp \to hX) &= \sum_{i,j=g,q,\bar{q}} \int dx_1 \int dx_2 \Phi_i(x_1, \vec{q}_{1T}, \mu^2) \times \\ &\times \Phi_j(x_2, \vec{q}_{2T}, \mu^2) \hat{\sigma}^{PRA}(ij \to hk, x_1 x_2 s) \\ q_1^{\mu} &= x_1 P 1^{\mu} + q_{1T}^{\mu}, \quad q_{1T} \neq 0, \quad q_1^2 = q_{1T}^2 = -\vec{q}_T^2 \end{aligned}$$

For details see following publications:

- M. Nefedov, "Sudakov resummation from BFKL," [arXiv:2105.13915 [hep-ph]].
- M. A. Nefedov and V. A. Saleev, "High-Energy Factorization for Drell-Yan process in pp and pp̄ collisions with new Unintegrated PDFs," Phys. Rev. D 102 (2020), 114018
- A. V. Karpishkov, M. A. Nefedov and V. A. Saleev, "*BB* angular correlations at the LHC in parton Reggeization approach merged with higher-order matrix elements," Phys. Rev. D **96** (2017) no.9, 096019

Non Relativistic Quantum Chromodynamics (NRQCD)

- NRQCD-factorization: Different L, S and color states of QQ̄-pair hadronize to X with different "probability" – long-distance matrix element (LDME): ⟨OX [2S+1L_J^(color)]⟩.
- LDME-s of states different from CSM-state are suppressed by powers of v^2 (~ 0.3 for J/ψ , ~ 0.1 for Υ) *velocity-scaling rules for LDMEs.* E.g. for J/ψ and $\psi(2S)$: CSM= ${}^{3}S_{1}^{(1)} = O(1)$ and ${}^{3}P_{J}^{(8)} = O(v^2)$ and ${}^{3}S_{1}^{(8)}$, ${}^{1}S_{0}^{(8)}$, contribute at $O(v^4)$.

Color Evaporation Model (CEM)

- In Improved-Color-Evaporation Model: all $Q\bar{Q}$ states with $M_X < M_Q\bar{Q} < 2M_{(\text{open flav. }Q-\text{meson})}$ hadronize to quarkonium X with the same probability F_X
- Optionally [Ma, Vogt, 2016] ICEM takes into account kinematic (soft-gluon recoil) corrections from the difference of masses $M_{Q\bar{Q}}$ and M_X using simple relation $p_T(X) = p_T(Q\bar{Q}) \times M_X/M_{Q\bar{Q}}$.
- ICEM can be viewed as NRQCD-factorization without velocity-scaling rules for probabilities F_X .

Both models are well-defined to all orders in α_s , but NRQCD-factorization is viewed as more "rigorous" approach by the community.

Predictions for prompt J/ψ transverse momentum spectra

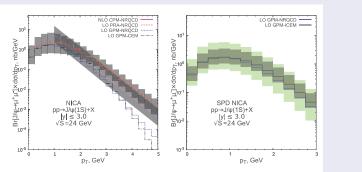


Figure 8 : Prompt J/ψ transverse momentum distribution at $\sqrt{s} = 24$ GeV, $|y| \leq 3$. Left panel: GPM results with $\langle q_T^2 \rangle = 1$ GeV² are shown by dash-dotted (NRQCD) and dash-double-dotted (ICEM) histograms. Solid and dashed histograms with uncertainty bands are PRA [A.V. Karpishkov, M.A. Nefedov and V.A. Saleev, J. Phys. Conf. Ser. **1435**, 012015 (2020)] and NLO CPM [M. Butenschön and B.A. Kniehl, private communication] predictions respectively. Right panel: GPM predictions in NRQCD (solid histogram with light green uncertainty band) and ICEM (dashed histogram with dark-green uncertainty band) approaches with their uncertainty bands shown.

Predictions for prompt J/ψ transverse momentum spectra

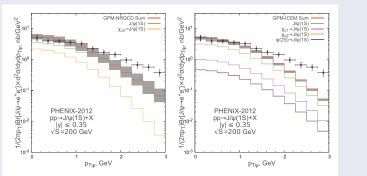
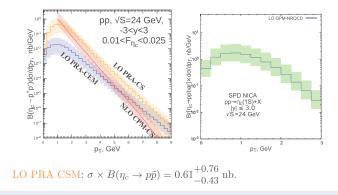
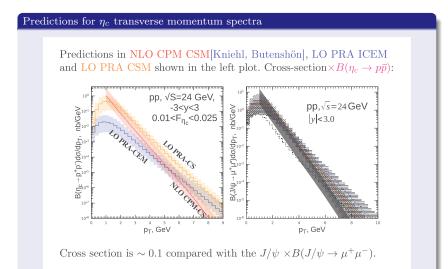
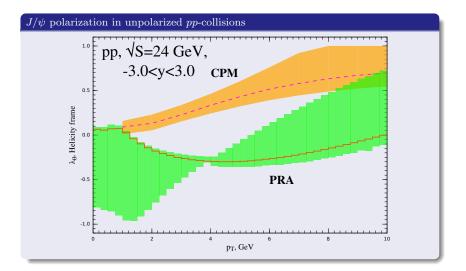




Figure 4 : Differential cross-section of prompt J/ψ production as function of transverse momentum at $\sqrt{s} = 200 \text{ GeV}$, $|y| \leq 0.35$. The theoretical results are obtained in GPM with $\langle q_T^2 \rangle = 1 \text{ GeV}^2$. Left panel: NRQCD-factorization prediction with only color-singlet channels included. Right panel: ICEM-prediction. In the left panel, non-zero contributions from decays $\chi_{c0} \rightarrow J/\psi$ and $\psi(2S) \rightarrow J/\psi$ are not shown. Experimental data are from the Ref. [A. Adare *et al.* [PHENIX], Phys. Rev. D **85**, 092004 (2012)].

Predictions for η_c transverse momentum spectra


Predictions in NLO CPM CSM[Kniehl, Butenshön], LO PRA ICEM and LO PRA CSM shown in the left plot. Right plot – LO GPM CSM (with $\langle k_T \rangle = 1$ GeV). Cross-section× $B(\eta_c \to p\bar{p})$:

Production of η_c as golden probe for gluon structure

- Any measurement of η_c production, even with large errors, is useful for development of heavy-quarkonium production theory
- If CS-model is valid (all existing data support this conclusion), η_c is the golden probe for proton structure. Couples to gluons, TMD-factorization is valid. One can study spin-asymmetries etc.

Transverse Single Spin Asymmetry (TSSA) in Charmonium production

$p^{\uparrow}p \to \mathcal{C}X \ \mathcal{C} = J/\psi, \chi_c, \psi(2S), \eta_c$

$$A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} = \frac{d\Delta\sigma}{2d\sigma}$$

The numerator and denominator of A_N have the form:

$$d\sigma \propto \int dx_1 \int d^2 q_{1T} \int dx_2 \int d^2 q_{2T} F_g(x_1, q_{1T}, \mu_F) F_g(x_2, q_{2T}, \mu_F) d\hat{\sigma}(gg \to \mathcal{C}X),$$

$$d\Delta \sigma \propto \int dx_1 \int d^2 q_{1T} \int dx_2 \int d^2 q_{2T} [\hat{F}_g^{\uparrow}(x_1, \mathbf{q}_{1T}, \mu_F) - \hat{F}_g^{\downarrow}(x_1, \mathbf{q}_{1T}, \mu_F)] \times F_g(x_2, q_{2T}, \mu_F) d\hat{\sigma}(gg \to \mathcal{C}X), \quad (1)$$

where $\hat{F}_{g}^{\uparrow,\downarrow}(x,q_{T},\mu_{F})$ is the distribution of unpolarized gluon (or quark) in polarized proton.

The gluon Sivers function (GSF) can be introduced as

$$\Delta \hat{F}_{g}^{\uparrow}(x_{1}, \mathbf{q}_{1T}, \mu_{F}) \equiv \hat{F}_{g}^{(\uparrow)}(x_{1}, \mathbf{q}_{1T}, \mu_{F}) - \hat{F}_{g}^{(\downarrow)}(x_{1}, \mathbf{q}_{1T}, \mu_{F}) \quad (2)$$

Transverse Single Spin Asymmetry (TSSA) in Charmonium production

CGI-GPM approach [L. Gamberg and Z. B. Kang, Phys. Lett. B 696, 109 (2011)]

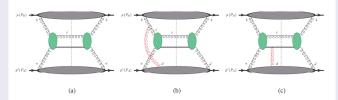


Figure 2 : LO diagrams for the process $p^{\uparrow}p \rightarrow J/\psi X$, assuming a color-singlet production mechanism, within the GPM (a) and the CGLGPM (b), (c). It turns out that only initial state interactions depicted in (b) contribute to the SSA. Figure is from [D'Alesio *et. al.*, Phys. Rev. D **96**, 036011 (2017)].

Transverse Single Spin Asymmetry (TSSA) in Charmonium production

$A_N^{J/\psi}(x_F)$, prompt J/ψ

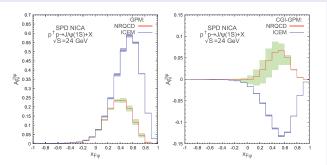


Figure 11 : Comparison of predictions for SSA $A_N^{J/\psi}$ as function of x_F at $\sqrt{s} = 24$ GeV in NRQCD (solid histogram) and ICEM (dashed histogram) approaches. Left panel: GPM-prediction. Right panel: CGI-GPM-prediction. The SIDIS1 parametrisation of GSFs is used.

Transverse Single Spin Asymmetry (TSSA) in charmonium production

$A_N^{J/\psi}(p_T)$, prompt J/ψ

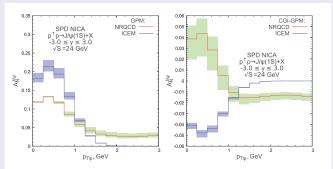


Figure 12 : Comparison of predictions for SSA $A_N^{J/\psi}$ as function of p_T at $\sqrt{s} = 24$ GeV in NRQCD (solid histogram) and ICEM (dashed histogram) approaches. Left panel: GPM-prediction. Right panel: CGI-GPM-prediction. The SIDIS1 parametrisation of GSFs is used.

$A_{LL}^{J/\psi}(p_T)$, prompt J/ψ

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\Delta\sigma}{\sigma},$$

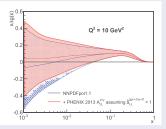
Collinear Parton Model + NRQCD-factorization:

$$\Delta \sigma = \sum_{\boldsymbol{n}} \left\langle \mathcal{O}^{X}[\boldsymbol{n}] \right\rangle \sum_{i,j} \Delta f_{i} \otimes \Delta f_{j} \otimes \Delta \hat{\sigma}_{ij}[\boldsymbol{n}],$$

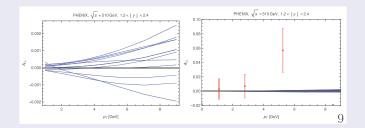
$$\sigma = \sum_{n} \left\langle \mathcal{O}^{X}[n] \right\rangle \sum_{i,j} f_{i} \otimes f_{j} \otimes \hat{\sigma}_{ij}[n]$$

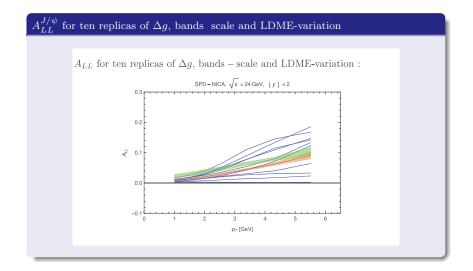
Possible observables:

- \blacktriangleright p_T-dependent (and y-dependent) asymmetry:
 - ▶ 2 → 2: $i + j \rightarrow c\overline{c}[n] + k$ processes at LO ⇒ **NLO-complicated**
 - scale $\mu \sim \sqrt{M^2 + p_T^2}$, CPM valid for $p_T > M$
- \blacktriangleright p_T-integrated, y-dependent asymmetry
 - ▶ 2 → 1: $[i + j \rightarrow c\bar{c}[n]]$ processes at LO ⇒ NLO-simple (but not done yet...)


▶ scale
$$\mu \sim M$$

$A_{LL}^{J/\psi}(p_T)$. Some references


- ▶ Un-polarized partonic cross-sections $\hat{\sigma}_{ij}[n]$ are well-known at LO.
- ▶ p_T -dependent asymmetry first studied at LO in [Teryaev, Tkabladze, Phys.Rev.D 56 (1997) 7331-7340], but expressions for $\Delta \hat{\sigma}_{ij}[n]$ are not given
- LO results for Δσ_{ij}[n] are written in [Klasen, Kniehl, Steinhauser, Phys.Rev.D 68 (2003) 034017, hep-ph/0306080], however I have some issues with this results, they need to be checked. In the present analysis only gluon-gluon channels are included, which I have reproduced.
- ▶ p_T-dependent asymmetry was studied at NLO in [Feng, Zhang, JHEP 11 (2018) 136]
- ▶ p_T -integrated asymmetry first studied in [Gupta, Mathews, Phys.Rev.D 55 (1997) 7144-7151]
- NLO results for un-polarized p_T-integrated partonic cross-sections had been obtained in closed form in [Petrelli, Cacciari, Greco, Maltoni, Mangano, Nucl.Phys.B 514 (1998) 245-309]


Validation: PHENIX data. Plot from hep-ex/1606.01815

LO LDMEs from [Braaten, Kniehl, Lee, Phys.Rev.D62 (2000) 094005] together with NNPDF30_nlo_as_0119_nf_6 PDF set and NNPDFpol11_100 polarized PDF set.

Validation: PHENIX data.

$A_{LL}^{J/\psi}(p_T)$. Outlook.

- ▶ A_{LL} up to 10% for J/ψ at NICA is consistent with latest NNPDF parametrization for Δg
- At LO, LDME and scale uncertainties look small, but this may be misleading
- ▶ Estimates in color-evaporation model should be done
- LDME sets predicting different polarization of quarkonium at high- p_T lead to significantly different asymmetry at RHIC. Impact for NICA is not clear...
- ▶ if color-singlet model for η_c is correct, then there is no LDME-set problem for this state!

D-meson production at SPD NICA

Massive scheme ($m_c = 1.2 - 1.5$ GeV) with nonperturbative fragmentation function $D_{c \to D}(z)$ or $D_{c \to D}(z, \vec{q}_T, \mu^2)$

$$z = \frac{E_D + p_D}{E_c + p_c}$$

D-meson cross sections at SPD NICA

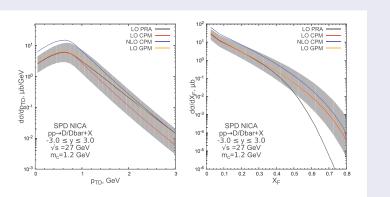


Figure 4 : Predictions for differential cross sections $d\sigma/dp_T$ and $d\sigma/dx_F$ on SPD

D-meson production at SPD NICA

 $A_N^D(p_T)$

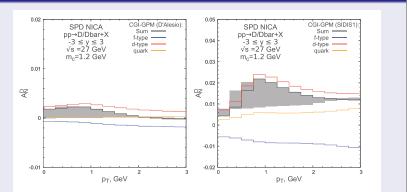


Figure 6 : Predictions for SSA on SPD NICA as function of p_T within the CGI-GPM and parametrizations of D'Alesio (*et. al.*) (left) and SIDIS1 (right). Phenomenological fragmentation function of Peterson with $\epsilon = 0.06$ and $N = f(c \rightarrow D^0) + f(c \rightarrow D^+) + f(c \rightarrow D^+_s) = 0.859$ is used.

D-meson production at SPD NICA

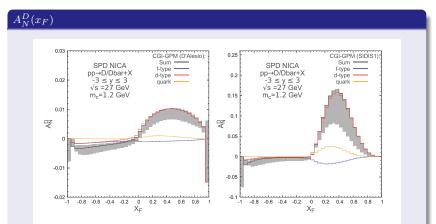
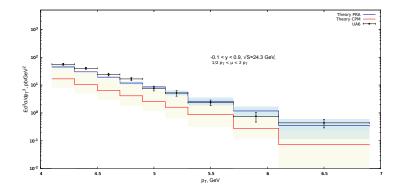


Figure 7 : Predictions for SSA on SPD NICA as function of x_F within the CGI-GPM and parametrizations of D'Alesio (et. al.) (left) and SIDIS1 (right). Phenomenological fragmentation function of Peterson with $\epsilon=0.06$ and $N=f(c\rightarrow D^0)+f(c\rightarrow D^+)+f(c\rightarrow D^+_s)=0.859$ is used.

Prompt photon production

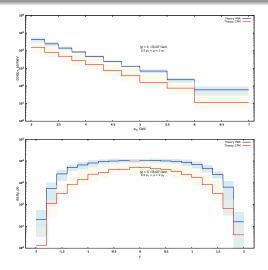
Prompt = Direct + Fragmentation or "Isolated photons" could be better ?

It is well known that at high energies and large photon p_T so called Isolation Criteria (ISO) can be used:

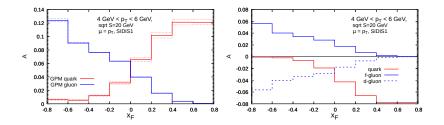

$$r=\sqrt{\Delta\phi^2+\Delta y^2}>R$$

At first, ISO with R = 0.4 and $E_{ISO} = 10$ GeV (for LHC data with $p_T \geq 50$ GeV, strongly suppress fragmentation contribution for isolated photon production. At second, ISO with Frixione receipt ("Frixione cone condition") help to estimate fragmentation contribution without knowledge on $D_{q \to \gamma}(z, \mu)$. It makes HO calculations more simple

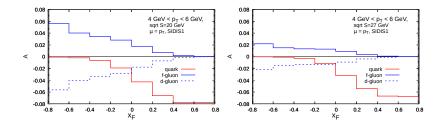
My question for experimentalists: "Is it possible to formulate Isolation Criteria for photon with $p_T = 3 - 6$ GeV ?"


Prompt photon production

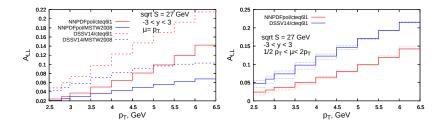
Transverse momentum spectrum in LO CPM and in PRA (it is coincide with NLO*). Data from UA6 Collaboration (1987).


Prompt photon production

Prediction for SPD NICA, LO CPM and PRA (NLO*)


Prompt photon production, TSSA

$A_N^{\gamma}(x_F)$, GPM versus CGI-GPM


Prompt photon production, TSSA

$A_N^{\gamma}(x_F)$, CGI-GPM, at $\sqrt{s} = 20$ and $\sqrt{s} = 27$ GeV

Prompt photon production, A_{LL}

$A_{LL}^{\gamma}(x_F),$

Future plans

O Charmonium production

- $p + p \rightarrow J/\psi + \gamma$: test of NRQCD and CEM, azimuthal correlations, ...
- Polarized J/ψ production in polarized proton collisions
- A_N , A_{LL} in η_c production
- $\bigcirc D-meson$ production
 - $D\bar{D}$ azimuthal correlation
 - Large p_T production for study $g_p(x, \mu^2)$ at large x at NLO CPM and PRA
 - A_{LL} in D-meson production
- Prompt photon production
 - Prompt photon production at large p_T in NLO CPM
 - Estimation for $\gamma\gamma$ production
- All suggestions are welcome !