

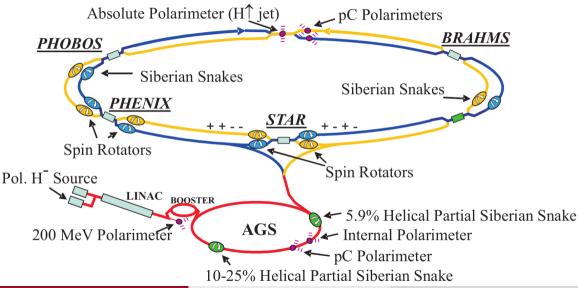
Recent spin results from PHENIX

Zhongling Ji for PHENIX Collaboration

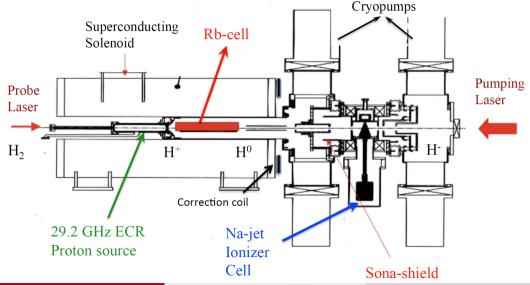
Stony Brook University

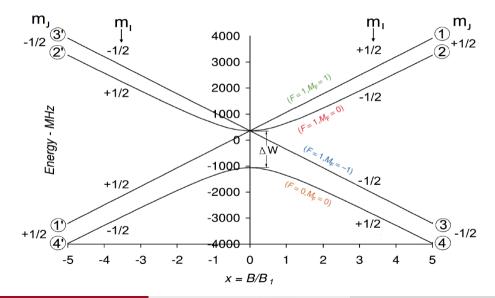
Spin Physics Detector Collaboration Meeting 2021

June 9, 2021

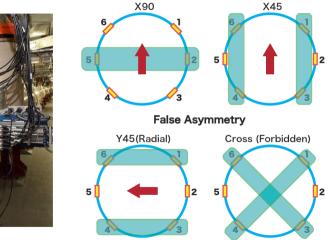

Outline

- 1. Experimental setup
- Longitudinal double spin asymmetry A_{LL}
 Direct photon
 Jet
 Charged pion
- 3. Transverse single spin asymmetry A_N Direct photon π^0 and η Forward neutron J/ψ Preliminary A_N results
- 4. Summary


Polarized protons at RHIC

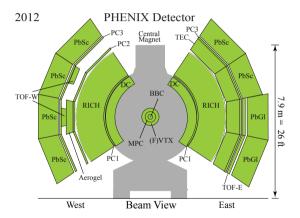

Optically Pumped Polarized Ion Source

Sona transition



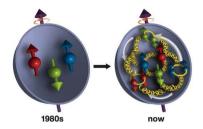
p-C polarimeters

Physics Asymmetry



PHENIX detector

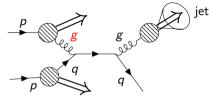
- $\blacksquare \ |\eta| < 0.35 \text{ and } \pi \text{ coverage for } \phi.$
- EMCal: primary detector for photons.
- EMCal trigger: select high energy particles.
- DC: measure charged particles.
- PC3: track matching.
- RICH: PID from Čerenkov light.


Probing the gluon spin inside the proton

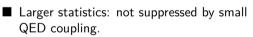
The proton spin can be decomposed as

$$\frac{1}{2} = \frac{1}{2} \sum_{q} \Delta q + \frac{\Delta g}{L_q} + L_q + L_g$$

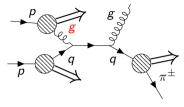
Gluon spin Δg is important for the proton spin puzzle.

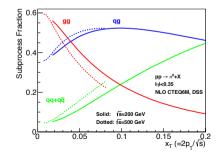


$$\blacksquare A_{LL} = \frac{\Delta\sigma}{\sigma} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

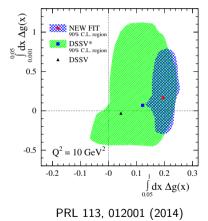

Little fragmentation contributions to direct photon production.

Jet and charged pion production

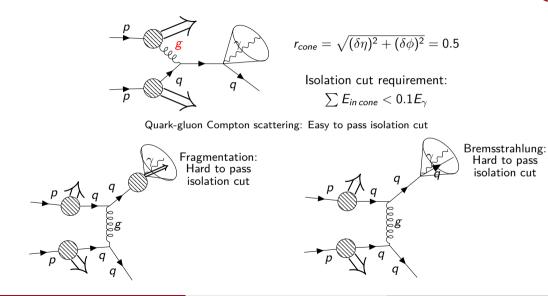



Jet production

- $\blacksquare \pi^{\pm}: \text{ separate u and d quark.}$
- RHIC 200 GeV data probe 0.05 < x < 0.2.
- RHIC 510 GeV data probe 0.02 < x < 0.08.

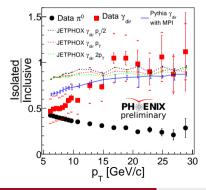

Charged pion production

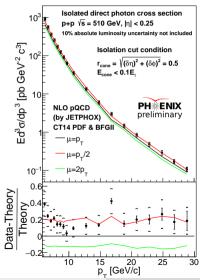
From A_{LL} to Δg



- Existing RHIC data mainly probe $0.05 < x_g < 0.2$.
- PHENIX $\pi^0 A_{LL}$ at 510 GeV confirms a nonzero Δg and extend x_g to 0.01.
- STAR jet data clearly imply a polarization of gluons in this range.
- Results from γ , jet and π^{\pm} will add additional independent constraints on the Δg .

Isolation cut for direct photon

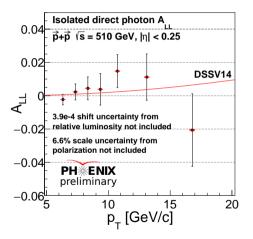




*

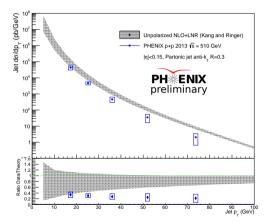
Direct photon cross section

- Consistent with NLO pQCD.
- MPI and parton shower are important for inclusive direct photon production.
- Constrain unpolarized gluon PDF.


Direct photon A_{LL}

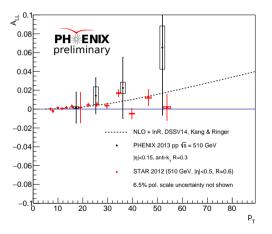
Consistent with NLO DSSV14.

• Will be the first published direct photon A_{LL} .


Constrain polarized gluon PDF Δg .

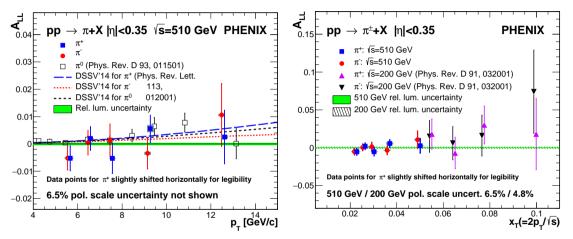
Jet cross section

- Calculation from NLO + In(R) resummation overestimates data.
- The calculation is at partonic level: MPI and parton shower are important.
- Similar observation from CMS, for small R anti-*k*_T.



Jet A_{II}

Recent spin results from PHENIX

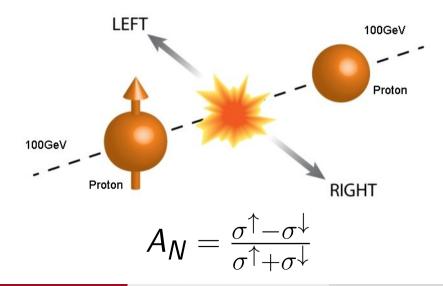

June 9, 2021 15/28

- Consistent with DSSV14 at NLO + ln(R)resummation.
- Independent constraint on polarized gluon PDF Δg .
- Uncertainty are correlated due to unfolding.

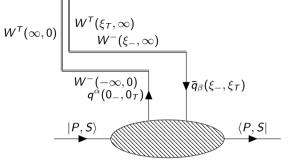
Charged pion A_{LL}

- 510 GeV data probe low x range.
- **I** Not enough statistics to decide π^{\pm} order.

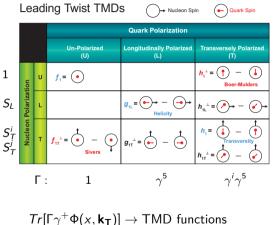
Zhongling Ji (Stony Brook University)


PRD 102, 032001 (2020)

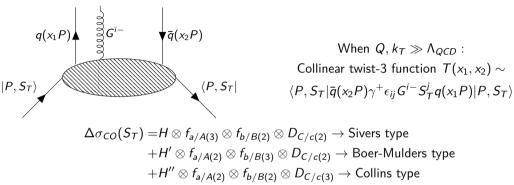
Consistent with DSSV14.


Recent spin results from PHENIX

Transverse Single Spin Asymmetry (TSSA)

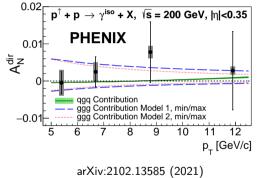


Origin of TSSA: TMD



 $\begin{array}{l} \text{When } Q \gg k_{\mathcal{T}} \gtrsim \Lambda_{QCD} : \\ \text{Quark correlation matrix } \Phi^{\alpha}_{\ \beta}(x,\mathbf{k_{T}}) \sim \\ \langle P,S | \bar{q}_{\beta}(\xi_{-},\xi_{\mathcal{T}}) W^{-}(\xi_{-},\infty) W^{\mathcal{T}}(\xi_{\mathcal{T}},\infty) \times \\ W^{\mathcal{T}}(\infty,0) W^{-}(-\infty,0) q^{\alpha}(0_{-},0_{\mathcal{T}}) | P,S \rangle \end{array}$

Origin of TSSA: Collinear twist-3

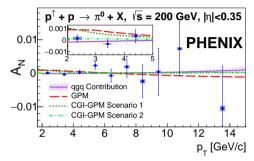

When $Q \gg k_T \gg \Lambda_{QCD}$, relation between TMD and collinear twist-3 :

$$\int d^2 \mathbf{k}_{\mathsf{T}} (k_T^2/M_P) f_{1T}^{\perp}(x, \mathbf{k}_{\mathsf{T}}) = T(x, x),$$
$$\Delta \sigma_{TMD}(S_T) = \Delta \sigma_{CO}(S_T) \text{ at leading } k_T/Q.$$

First direct photon A_N .

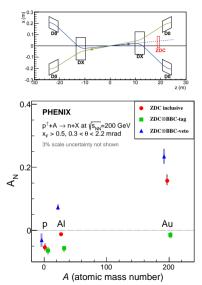
Direct photon A_N

- Measured A_N consistent with zero.
- Small contribution from qgq correlation.
- Clean extraction of tri-gluon ggg correlation.
- ggg model 1 and 2 have different gluon PDF.
- Constrain gluon spin-momentum correlations.

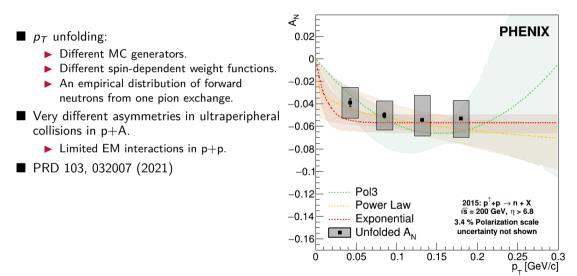


π^0 and ηA_N

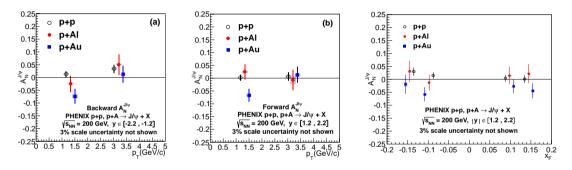
- PRD 103, 052009 (2021)
- Improved stat. uncertainty.
- Consistent with previous measurement and with zero.
- $\blacksquare A_N^{\pi^0} \text{ vs } A_N^{\eta}: \text{ strangeness, isospin and mass.}$


- Small qgq and constrain tri-gluon ggg.
- Sivers TMD PDF: GMP and CGI-GPM.
- CPI-GPM include initial- and finalinteractions to reproduce Sivers sign change.
- Scenario 1 (2) maximize (minimize) open heavy flavor TSSA.

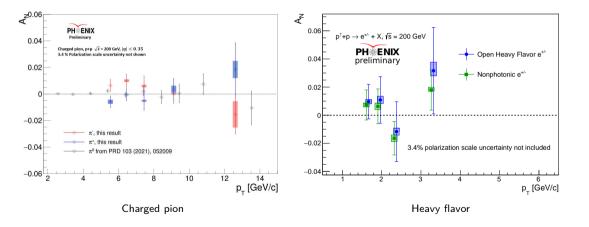
Forward neutron A_N in p+A


■ Inclusive = BBC-tag($N \cap S$) + BBC-veto($\overline{N} \cap \overline{S}$) + ...

- Unexpected strong A dependence in inclusive and BBC-veto.
- Very different behavior in BBC-tag.
- BBC requirement or veto influence activity near detected neutron.
- Possible explanation: EM processes, which suppressed (enhanced) in BBC-tag (BBC-veto).
- Need further study.
- PRL 120, 022001 (2018)


Forward neutron A_N in p+p

$J/\psi A_N$ in p+A



Access to the spin-dependent gluon distribution and higher-twist correlation functions.

- Indication of EM interactions.
- PRD 98, 012006 (2018)

Preliminary A_N results

- Gluon spin is important for proton spin decomposition and the proton spin puzzle.
- Direct photon production have little fragmentation contributions.
- If Jet and π^{\pm} production have larger statistics.
- $\blacksquare \ \pi^{\pm}$ measurement can separate u and d quark contributions.
- **Contribute to future global analysis together with forward cluster and forward/central** ηA_{LL} .
- **TSSA** measurements from direct photon, π^0 and η are important to understand the qgq and ggg correlations in collinear twist-3 formalism as well as the TMD functions.
- The nuclear dependence in forward neutron A_N indicates possible EM interactions and needs further study.

Backup

Processes

Reaction	Dom. partonic process	probes	LO Feynman diagram
$\vec{p}\vec{p} \rightarrow \pi + X$	$ec{g}ec{g} o gg$	Δg	ger a a a a a a a a a a a a a a a a a a a
	ec q ec g o q g		ð, ₹
$\vec{p}\vec{p} \rightarrow \text{jet}(s) + X$	$ec{g}ec{g} ightarrow gg \ ec{q}ec{g} ightarrow qg$	Δg	(as above)
$ \vec{p}\vec{p} \to \gamma + X \vec{p}\vec{p} \to \gamma + \text{jet} + X $	$egin{array}{c} ec{q}ec{g} ightarrow\gamma q \ ec{q}ec{g} ightarrow\gamma q \ ec{q}ec{g} ightarrow\gamma q \end{array}$	$\begin{array}{c} \Delta g \\ \Delta g \end{array}$	<u>></u>
$\vec{p}\vec{p} \rightarrow \gamma\gamma + X$	$\vec{q}\vec{\overline{q}} ightarrow \gamma\gamma$	$\Delta q, \Delta \bar{q}$	
$\vec{p}\vec{p} \to DX, BX$	$ec{g}ec{g} ightarrow c ec{c}, b ec{b}$	Δg	Josef