}
NICA

Fast ECAL reconstruction using deep learning

Dimitrije Maletic

Institute of Physics Belgrade, Serbia

L.

09.06.2021, SPD collaboration meeting

The goal is to present tools, and to present possible next steps in looking
into fast ECAL reconstruction using Convolutional Neural Networks (CNN).
There are no results presented, just some tests.

Overview:

- Some notes on evolution of gamma / pi0,... separation

- Basics of Convolutional Neural Networks

- Setup for MC simulation and Neural Network training

- Outputs (logs) for Neural Network training and testing, design of NNs

- About MC simulation and preparation of training and testing events for NNs

- Ideas about next steps in using CNNs

Notes on gamma / pi0,... separation

- With existing ECAL reconstuction chain, your first step could
be to try to separate pi0 and gamma by using isolation criteria,
and demand that high percentage of shower energy is
contained in small area around tower (crystal) that triggered
storage of an event.

- Next you can find more about shower shape in ECAL, and find
some useful features of that shape, and apply cuts on those or
use all features as input variables in Artificial Neural Network,
like single layer feed forward ANN.

- The TMVA with collected multivariate methods appeared,
including very useful Busted Decision Trees method.

- Currently, you do not need reconstruction, nor shower shape
(or other) features, but let Convolutional Neural Network to train
(and test) using events in form of whole surface image of ECAL,
(and other detectors).

One hidden layer

Convolutional Neural Networks

Convolution Layer consider a second, green filter

activation maps

__— 32x32x3 image

Image depth: :

can be RGB / 32// 5x5x3 filter %

channels, time)

slices... @>O 28
convolve (slide) over all

spatial locations
/ 28

N

w|
—

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 15 27 Jan 2016

Deep Learning

Training ‘
/Learned Model \

labels

Image Classification: [——]

ini ™
/ ‘Irralnlng \ Kl'raining \ [Low-level |
mages
S .‘ - v lovel “ 2 | features |
- -~ ope - N\
a0 4ad oo features Classifier | Mid-level Model is
0w e e e ‘. f ‘ __ features | >deep: it
Rl b Mid-level |\ High-level | High-level has many
Yo T W U7 P pn ‘ & features layers
} ‘vry B o B e features | features | s Z
/ Classifier
Models can learn hierarchical features /

Figure credit: Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

IMAGENE T Large Scale Visual Recognition Challenge

Year 2010
NEC-UIUC

t

Dense grid descriptor:
HOG, LBP

)

¥

Coding: local coordinate,
super-vector

\

Pooling, SPM

¥

Linear SVM

[Lin CVPR 2011]

Year 2012
SuperVision

[Krizhevsky NIPS 2012]

[Szegedy arxiv 2014]

Year 2014

GooglLeNet

1
telenfee

5 5 5 e
[

L1
=l
iy

e
B i
5 8 S e
(-]

Ve BN =
5 =8 = = s
] =]
B EEE
e 111
= ==
B e eR
]
-
EEEE

]
] -]
= E3
e =
5 Ea e Be
-]

===
B3 23 B3 B9
Convolution=

Pooling "

Other

VGG

image

conv-64
conv-64
maxpool

conv-128
conv-128

maxpool
conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
~ softmax

[Simonyan arxiv 2014]

Year 2015
MSRA

34-layer residual

Revolution of Depth 28.2
[152 layers \ '

\
\
\
‘ 22 layers ‘ ‘ 19 Iayers ‘
\ 6.7 I

357 I_ I 8 layers H 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

mEa =

Usage of CNN in HEP

- Convolutional Neural Network for high p_T jet tracking
(CMS 2020)

- Tagging Hadronically Decaying Top Quarks with Deep Neural
Networks PhD thesis 2019

- Implementation of Deep Neural Networks for the Level 1 Trigger
system of the future High-Granularity Calorimeter (HGCAL) PhD
thesis CMS October 2020

- End-to-End Event Classification of High-Energy Physics Data
End-to-end approaches can be used for event classification to learn

directly from detector-level data in a way that is completely
independent of the high-level physics reconstruction

Two convolutional layers

ConviD Four dense layers
. Filters: 16
PF candidate features + Eilter size: 1x11 DENSE (100 units)
BEST jet kinematic and Strides: 5 Last dense layer
topological variables maxpooL 10 (2) | FLATTEN (SEIIERENCELION] IRENSIPRTel | | outpuT
EENSEENRNREN — — X
N ConvlD DENSE (100 units)
Filters: 16
Filter size: 1x6 DENSE (100 units)
Strides: 2
MAXPOOL 1D (2)

—_—

FIGURE 5.1: A schematic showing the general architecture of the PF+BEST

neural network. This architecture was modified in a few tests, but this base

network, with two convolutional layers, four “main” dense layers, and one
final dense layer, was the primary structure used for training and testing.

* Many groups have also tried to apply machine learning to aid in the
solution of this problem, such as

» Convolutional neural networks using an analogy between
calorimeters and images [arXiv:1407.5675, arXiv:1511.05190,
arXiv:1704.02124]

* Recursive neural networks built upon an analogy between QCD

and natural languages [arXiv:1702.00748|

Convolved
Convolutions Feature Layers

Max-Pooling

e
—

W'—= W7 event i "

Repeat

[L. de Oliveira, et al. arXiv:1511.05190]

o O o
Q OOO

(a) Drell-Yan (b) W + jets (¢) tt + jets

Fig. 6 Examples of immages corresponding to the three different classes of collisions being
classifed. The x-axis depicts the psendorapidity 7 while the y-axis depicts the azimuthal angle
©.

Signal

Entries
Mean x
Mean y
Std Dev x
Std Dev y

Background ,,

10
Entries

Mean x
Mean y
Std Dev x
Std Dev y

o a4 n w L (6] o N [ee] ©

20000
5.062
6.045

2.39
2.298

20000
5.623
6.009
2.388
2.296

My setup for NN training: Centos 8, openblas,
python3.8, pip3.8, tensorflow, torch, root_v6.24, nvidia
graphical card — still not used (did not get cudNN).

Setup for MC simulations: Centos 7, spdroot 4.1.0

TMVA _*

TensorFlow

O PyTorch

Background rejection versus Signal efficiency

_5 1 T T T =
B 0.9 b IR =
g = =
-g 08 - -]
3 = =
;5’ 0'7 R S S S Y SCUEUEUIOE SUCRRCLL N, N R —
X : .
o _]
© 0.6 [Frvrrvoresnier e —
@ C MVA Method 5 E E E E E 3
0.5 [b . PYTOICH o — AP TS S—\ | W=
C PyKeras : : : : : 3

- ——m®Or Y

03 | T NN CPU I S S R
0.2 :I 11 1 i 11 1 1 i 11 1 | i 11 1 | i 11 1 | i 11 1 1 i 11 1 1 i 11 1 1 i 11 1 | i 11 | I_
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Signal efficiency

Optimize Neural network layout!

TMVA_DNN_CPU
Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR

DEEP NEURAL NETWORK: Depth =8 Input=(1, 1, 256) Batch size = 100 Loss function =C

Layer O DENSE Layer: (Input= 256, Width= 100) Output=(1, 100, 100) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = (100, 100,1) Normdim= 100 axis=-1

Layer 2 DENSE Layer: (Input= 100, Width= 100) Output=(1, 100, 100) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = (100,100,1) Normdim= 100 axis=-1

Layer 4 DENSE Layer: (Input= 100, Width= 100) Output=(1, 100, 100) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = (100, 100,1) Normdim= 100 axis=-1

Layer 6 DENSE Layer: (Input= 100, Width= 100) Output=(1, 100, 100) Activation Function = Relu
Layer 7 DENSE Layer: (Input= 100, Width= 1) Output=(1, 100, 1) Activation Function = ldentity

wm T l I(-l"fﬂ’um R(z) =maz(0, z)

* Leaky ReLU 8
Wi * Maxout

activation function

@ z) o® [:

InpuL5< Wz
X3

2
o % = weighted sum \
Neuron

7 X278 -5 0 5 10

Q
Il

Optimize Neural network layout!

TMVA_CNN_CPU

InputLayout: "1|16|16" [The Layout of the input]

Layout: " ,BNORM,CONV/|10]3|3|1|1|1]1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
Layer (type) Output Shape Param #
reshape (Reshape) (None, 16, 16, 1) 0

batch_normalization (BatchNo (None, 16, 16, 10) 40

conv2d_1 (Conv2D) (None, 16, 16, 10) 910

max_pooling2d (MaxPooling2D) (None, 15, 15, 10) 0

flatten (Flatten) (None, 2250) 0
dense (Dense) (None, 256) 576256
dense_1 (Dense) (None, 2) 514

Total params: 577,820
Trainable params: 577,800
Non-trainable params: 20

MC Simulation:

- using latest spdroot-4.1.0.

- first step in preparation of data for training of NNs is using isotropic generator to produce
samples of single gamma and pi0 in central barrel region. Continue training with ECAL images
of more realistic events. Use full simulation. ECAL reconstructed clusters for trainning.

Hits
Event 1 particle_energy 0.868217 hi
particle_pos -0.19639 0.734603 clusterld 5 cluster_energy 0.890704
is_barrel 1 is_endcap 0 No_cells 9 cells:
cell 44 hit_energy 0.16364 hit_pos Phi 1.14641 Theta 1.75628]
cell 60 hit_energy 0.0125859 hit_pos Phi 1.04991 Theta 1.66021 L -
cell 46 hit_energy 0.000327415 hit_pos Phi 1.04991 Theta 1.72831
cell 47 hit energy 0.0444611 hit pos Phi 1.09835 Theta 1.75622 I

cell 48 hit_energy 0.0108021 hit_pos Phi 1.09835 Theta 1.78859
cell 49 hit_energy 0.00466598 hit_pos Phi 1.14641 Theta 1.78865
cell 55 hit_energy 0.0117995 hit _pos Phi 1.45055 Theta 0.798613
cell 56 hit_energy 0.0659235 hit_pos Phi 1.45055 Theta 0.780733
cell 133 hit_energy 0.00785588 hit_pos Phi 1.45055 Theta 0.763627

Theta

. i 8GeV, isotropic, =z e
Possible FC ANN variables central ECAL

barrel region *

— gamma phi

— pi0 phi

Shower Shape variables

600
Crystals’ energy sums
Fully 400
I el T connected feed |
Ps =g Ps =g TP Ty 200
9 25" 91 % forward, back B
po=s. p=Ss o MatS _M,+S, propagation N e B
8 6- ratio® I'9 S ’ 11 59 > 712 54 neural network 0 0.05 - - 0.1 - 0.15 0.2 -[Ge-V*de%]zs
‘Z < —‘ZZS o with one Plots are indicative and not optimised
cog ycog 25 i=l iyi hldden |ayer & 60 :_
x and y™ are crystal’s coordinates relative to S, E — gamma both
500 — pi0 both
Covariances Zil(xc' <x>)(y'- <y>)o, s00-
Oxy = 225 B I . . e
b= Tn O L F Isolation in @,6 cone
> 70.0004" 7 0.001°] -
XY =109 o, =MAX(0.,0, +log(E,/S,)) ool
A _ 2 2 -
P == ; a,m +o,, +/(0, -0,) +tdo 100}~
) 2 OO_ 0|1 0|2|JI03 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio E_in/E_total

Software for translating neural
networks to hardware.

Need to follow progress of this
kind of software, and look at
constrains for memory.

his 4 ml

A package for machine learning inference in
FPGAs. We create firmware implementations
of machine learning algorithms using high level
synthesis language (HLS). We translate
traditional open-source machine learning
package models into HLS that can be
configured for your use-case!

e hils4ml is a package for translating neural networks to FPGA firmware for inference with

extremely low latency on FPGAs

. https://github.com/hls-fpga-machine-learning/hls4ml

« https://fastmachinelearning.org/hls4ml/

« pip install hlsdml

C0m|ng Soon T

* A few exciting new things should become
available soon (this year):

« Intel Quartus HLS & Mentor Catapult HLS
‘Backends’

« Convolutional Neural Networks

« Much larger models than we’ve supported
before

Ny elements

« Recurrent Neural Networks b
« More integrated ‘end-to-end’ ya

flow with bitfile generation . /

and host bindings for o =
platforms like Alveo, PYNQ

= Data pack of channels{c1, c2, c3} values

needed for slide

|

Buffer that is filt heightxfilt width
+

Our usual dense layer code
With all bells and whistles

L Stream out pixel by pixel

Take elements . and build stream! Multiply This is the kernel unrolled!
i

a
&

EEEEEEREE F E FF R 5

‘,
EH EIFHEIH|

:

3 P

g E

@ =

3

=

—s— |

Next steps:

- Improve control of training by using learning transfer (using network parameters from
previous training as starting point) This way we can move from simpler events training to
more complex ones:
- We can use single particle simulations to initially train a network.
- Continue training at some other time with realistically simulated events,
when they become available.

- On one input image all detectors can be placed, one beside the other or, naturally, each
detector image is placed as a new layer, one on top of the other.

- Adding time slices if needed.

- Artificially increasing number of input images:
for simulated isotropic events: new image — from old image, shifted in phi.

- Implement “middle step” (between classical and CNN based ECAL reconstruction): ANN
using shower shape features for cross checks.

- Coordinate with ECAL experts. Follow new developments in FPGA, GPU hardware and
software (ml algorithms, translating NN to hardware).

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

