

Fast ECAL reconstruction using deep learning

Dimitrije Maletic

Institute of Physics Belgrade, Serbia

09.06.2021, SPD collaboration meeting

The goal is to present tools, and to present possible next steps in looking
into fast ECAL reconstruction using Convolutional Neural Networks (CNN).
There are no results presented, just some tests.

Overview:

- Some notes on evolution of gamma / pi0,... separation

- Basics of Convolutional Neural Networks

- Setup for MC simulation and Neural Network training

- Outputs (logs) for Neural Network training and testing, design of NNs

- About MC simulation and preparation of training and testing events for NNs

- Ideas about next steps in using CNNs

Notes on gamma / pi0,... separation

- With existing ECAL reconstuction chain, your first step could
be to try to separate pi0 and gamma by using isolation criteria,
and demand that high percentage of shower energy is
contained in small area around tower (crystal) that triggered
storage of an event.

- Next you can find more about shower shape in ECAL, and find
some useful features of that shape, and apply cuts on those or
use all features as input variables in Artificial Neural Network,
like single layer feed forward ANN.

- The TMVA with collected multivariate methods appeared,
including very useful Busted Decision Trees method.

- Currently, you do not need reconstruction, nor shower shape
(or other) features, but let Convolutional Neural Network to train
(and test) using events in form of whole surface image of ECAL,
(and other detectors).

One hidden layer

Image depth:
can be RGB
channels, time
slices...

Convolutional Neural Networks

Image Classification:
Deep Learning

Low-level
features

Training

Training
labels

Learned Model

Low-level
features

Mid-level
features

Mid-level
features

High-level
features

Classifier

High-level
features

Classifier

Model is
deep: it
has many
layers

Models can learn hierarchical features

Figure credit: Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Usage of CNN in HEP

- Convolutional Neural Network for high p_T jet tracking
 (CMS 2020)

- Tagging Hadronically Decaying Top Quarks with Deep Neural
Networks PhD thesis 2019

- Implementation of Deep Neural Networks for the Level 1 Trigger
system of the future High-Granularity Calorimeter (HGCAL) PhD
thesis CMS October 2020

- End-to-End Event Classification of High-Energy Physics Data
End-to-end approaches can be used for event classification to learn
directly from detector-level data in a way that is completely

 independent of the high-level physics reconstruction

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kg
ro

un
d

re
je

ct
io

n

MVA Method:
PyTorch
PyKeras
TDNN_CPU
BDT
TCNN_CPU

Background rejection versus Signal efficiency
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10 h1
Entries 20000

Mean x 5.062
Mean y 6.045
Std Dev x 2.39
Std Dev y 2.298

h1
Entries 20000

Mean x 5.062
Mean y 6.045
Std Dev x 2.39
Std Dev y 2.298

h1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10 h2
Entries 20000

Mean x 5.623
Mean y 6.009

Std Dev x 2.388
Std Dev y 2.296

h2
Entries 20000

Mean x 5.623
Mean y 6.009

Std Dev x 2.388
Std Dev y 2.296

h2

Signal

Background

My setup for NN training: Centos 8, openblas,
python3.8, pip3.8, tensorflow, torch, root_v6.24, nvidia
graphical card – still not used (did not get cudNN).

Setup for MC simulations: Centos 7, spdroot 4.1.0

Optimize Neural network layout!

TMVA_DNN_CPU

Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR

DEEP NEURAL NETWORK: Depth = 8 Input = (1, 1, 256) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: (Input = 256 , Width = 100) Output = (1 , 100 , 100) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = (100 , 100 , 1) Norm dim = 100 axis = -1

Layer 2 DENSE Layer: (Input = 100 , Width = 100) Output = (1 , 100 , 100) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = (100 , 100 , 1) Norm dim = 100 axis = -1

Layer 4 DENSE Layer: (Input = 100 , Width = 100) Output = (1 , 100 , 100) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = (100 , 100 , 1) Norm dim = 100 axis = -1

Layer 6 DENSE Layer: (Input = 100 , Width = 100) Output = (1 , 100 , 100) Activation Function = Relu
Layer 7 DENSE Layer: (Input = 100 , Width = 1) Output = (1 , 100 , 1) Activation Function = Identity

Optimize Neural network layout!

TMVA_CNN_CPU

InputLayout: "1|16|16" [The Layout of the input]

Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]

Layer (type) Output Shape Param #
===
reshape (Reshape) (None, 16, 16, 1) 0

conv2d (Conv2D) (None, 16, 16, 10) 100

batch_normalization (BatchNo (None, 16, 16, 10) 40

conv2d_1 (Conv2D) (None, 16, 16, 10) 910

max_pooling2d (MaxPooling2D) (None, 15, 15, 10) 0

flatten (Flatten) (None, 2250) 0

dense (Dense) (None, 256) 576256

dense_1 (Dense) (None, 2) 514
===
Total params: 577,820
Trainable params: 577,800
Non-trainable params: 20

MC Simulation:

- using latest spdroot-4.1.0.
- first step in preparation of data for training of NNs is using isotropic generator to produce
samples of single gamma and pi0 in central barrel region. Continue training with ECAL images
of more realistic events. Use full simulation. ECAL reconstructed clusters for trainning.

Event 1 particle_energy 0.868217
particle_pos -0.19639 0.734603 clusterId 5 cluster_energy 0.890704
is_barrel 1 is_endcap 0 No_cells 9 cells:
 cell 44 hit_energy 0.16364 hit_pos Phi 1.14641 Theta 1.75628
 cell 60 hit_energy 0.0125859 hit_pos Phi 1.04991 Theta 1.66021
 cell 46 hit_energy 0.000327415 hit_pos Phi 1.04991 Theta 1.72831
 cell 47 hit_energy 0.0444611 hit_pos Phi 1.09835 Theta 1.75622
 cell 48 hit_energy 0.0108021 hit_pos Phi 1.09835 Theta 1.78859
 cell 49 hit_energy 0.00466598 hit_pos Phi 1.14641 Theta 1.78865
 cell 55 hit_energy 0.0117995 hit_pos Phi 1.45055 Theta 0.798613
 cell 56 hit_energy 0.0659235 hit_pos Phi 1.45055 Theta 0.780733
 cell 133 hit_energy 0.00785588 hit_pos Phi 1.45055 Theta 0.763627

Phi

rel
ii icog

rel
ii icog yEypxExp  


25

1257

25

1251 ,

25

4
6

125

19
5

9

1
4 ,,

S

S
p

SS

SS
p

S

S
p 
















25

1

25

1
))((

c c

c c
cc

xy

yyxx






4

12
12

9

12
11

9

6
968 ,,,

S

SM
p

S

SM
p

S

S
pSp ratio





 

))/log(.,0(250 SEMAX cc  

,
001.0

,
0004.0 32

 
 pp

2

4)(22





 







10p

 ,, yx

Shower Shape variables

Crystals’ energy sums

Covariances

xrel and yrel are crystal’s coordinates relative to S1

Isolation in φ,θ cone

COG in φ
Fully
connected feed
forward, back
propagation
neural network
with one
hidden layer

Possible FC ANN variables
8GeV, isotropic,

central ECAL
barrel region

Plots are indicative and not optimised

A package for machine learning inference in
FPGAs. We create firmware implementations
of machine learning algorithms using high level
synthesis language (HLS). We translate
traditional open-source machine learning
package models into HLS that can be
configured for your use-case!

Software for translating neural
networks to hardware.

Need to follow progress of this
kind of software, and look at
constrains for memory.

Next steps:

- Improve control of training by using learning transfer (using network parameters from
previous training as starting point) This way we can move from simpler events training to
more complex ones:

- We can use single particle simulations to initially train a network.
- Continue training at some other time with realistically simulated events,

when they become available.

- On one input image all detectors can be placed, one beside the other or, naturally, each
detector image is placed as a new layer, one on top of the other.

- Adding time slices if needed.

- Artificially increasing number of input images:
for simulated isotropic events: new image – from old image, shifted in phi.

- Implement “middle step” (between classical and CNN based ECAL reconstruction): ANN
using shower shape features for cross checks.

- Coordinate with ECAL experts. Follow new developments in FPGA, GPU hardware and
software (ml algorithms, translating NN to hardware).

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

