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1 Z boson decay*
A Z boson of mass MZ = 91.188 GeV decays at rest to a pair of τ+τ−. A τ lepton has a mass of
mτ = 1.777 GeV.

a) Compute energy and momentum of the decay products in GeV.

b) The mean lifetime of τ ’s at rest is 2.90× 10−13 s. How far do the τ ’s make it on average?

2 Neutron decay and conservation laws*
Name at least one conservation law that is violated by the following hypothetical decays

n→ p+ e− , n→ π+ + e− , n→ p+ π− , n→ p+ γ .

3 Four-vectors*
The center of mass energy Ecm of a system of two particles is given by E2

cm = s = (p̂1 + p̂2)2, where p̂1
and p̂2 are the four-momenta p̂ = (E, ~p) of the respective particle.

a) Show that s is Lorentz invariant.

b) At HERA protons of Ep = 920 GeV were collided with electrons of Ee = 27.5 GeV. Compute the
center of mass energy of an ep-system.

c) What energy for the electrons would be required to achieve the same center of mass energy if the
protons are at rest.

4 Finger exercises about the Standard Model*

a) Derive the classical form of Maxwell’s equations from the covariant equations of motion of QED
stated in the lecture.

b) Create a table of all Standard Model (SM) fields and their charges under all symmetry groups.

c) Write down the full SM Lagrangian (you may use the lecture to collect the pieces and add things
that have not been shown).

d) Perform a full count of the number of real parameters by rotating to a “physical” basis. Why does
the CKM matrix only have four physical parameters although a general unitary matrix would be
expected to have nine?

5 The Lorentz group and SL(2,C)**
In this exercise we will construct an isomorphism

SO(1, 3) ∼= SL(2,C)/Z2 .

SL(2,C)/Z2 is the group of complex 2× 2 matrices λ, with det(λ) = 1, where all elements are identified
that differ only by the action of Z2 ≡ {1,−1}. Consequently every matrix λ is identified with its (additive)
inverse −λ.

a) Show that
Vµ 7−→ v ≡ σµ Vµ



defines an isomorphism between Minkowski space M4 and the space of two-dimensional Hermitian
matrices H := {h ∈ C2×2|h† = h} where σµ are the Pauli matrices

σ0 ≡
(

1 0
0 1

)
, σ1 ≡

(
0 1
1 0

)
, σ2 ≡

(
0 −i
i 0

)
, σ3 ≡

(
1 0
0 −1

)
.

b) Prove the equation
Vµ V

µ = det(v) .

c) Show that each λ ∈ SL(2,C) corresponds to a Lorentz transformation Λ(λ) which acts on elements
in H by

Λ(λ) : v 7−→ v′ = Λ(λ) v := λ v λ† .

Is this a one–to–one correspondence?

d) Now check if this action on H preserves the group structure of SO(1, 3), that is
i) ∃ λ0 : Λ(λ0) = 1 ,
ii) Λ(λ1λ2) = Λ(λ1)Λ(λ2) ,
iii) ∀ Λ(λ) ∃Λ−1(λ) : Λ(λ) Λ−1(λ) = 1 .

e) Compare the number of real parameters of SL(2,C)/Z2 and SO(1, 3).

6 Chiral and Dirac basis*
The two Weyl spinors ξ and η̄ (the bar is part of the name here) can be combined to the Dirac 4-Spinor
(in chiral basis),

ψchiral ≡
(
ξ
η̄

)
.

Combining the two Weyl equations of its components, we find that it fulfills the Dirac equation

(γµc pµ −m)ψc(~p ) = 0 ,

with the γ-matrices

γ0
c ≡

(
0 1

1 0

)
, γic ≡

(
0 σi

−σi 0

)
and γ5

c ≡ i γ0 γ1 γ2 γ3 =
(
−1 0

0 1

)
,

in the so-called chiral basis. To change to another basis, we make a unitary transformation

ψnew = Uψchiral with U†U = 1 .

a) Show that ψnew fulfills the Dirac equation with γ–matrices

γµnew = U γµc U† .

Another common basis for the γ-matrices is the so-called Dirac basis, which can be obtained
through

UDirac ≡
1√
2

(
1 1

−1 1

)
.

b) Calculate explicit expressions for γµDirac and γ5
Dirac.

c) The action of the Lorentz group on spinors in chiral basis is

ψc 7−→

exp
(

i
2 ~σ · ~θ + 1

2 ~σ · ~β
)

0

0 exp
(

i
2 ~σ · ~θ −

1
2 ~σ · ~β

)ψc .

where ~θ is the vector of rotation angles and ~β the vector of rapidities with respect to the three
spatial axes. Calculate the action of the Lorentz group on spinors in Dirac basis.



7 The gauge covariant derivative**
Under local gauge transformations (Abelian or non–Abelian), a field transforms according to

ψ(x) 7−→ U(x)ψ(x) ,

with some position dependent function U(x) that assigns each point of space–time an element of the
gauge group G. This represents the freedom to select a different gauge at every point in space–time.

a) Show that the derivative of a field does not transform like the field itself

∂µψ(x) 67−→ U(x) ∂µψ(x) .

To maintain the gauge symmetry of the Lagrangian, one has to find a gauge invariant derivative Dµ also
called covariant derivative such that the covariant derivative of a field transforms as

Dµψ(x) 7−→ U(x)Dµψ(x) .

To this end, one introduces a gauge field Aµ and defines an auxiliary field ψ̃ by

ψ̃(x+ dx) := ψ(x+ dx) + igAµ(x)ψ(x)dxµ ,

where the gauge field Aµ is chosen such that ψ̃ transforms as

ψ̃(x+ dx) 7−→ U(x) ψ̃(x+ dx) .

The covariant derivative can then be defined by

(Dµψ(x)) dxµ := ψ̃(x+ dx)− ψ(x) ,

b) Show that one can write
Dµψ = (∂µ + igAµ)ψ .

c) The gauge field Aµ itself transforms non–trivially under the action of the gauge group. Using the
transformation properties of ψ and ψ̃, show that Aµ has to transform as

Aµ 7−→ UAµU
† + i

g
(∂µU)U† .

Note that the gauge field is an element of the Lie algebra g corresponding to G. For simplicity, one can
regard it as a matrix acting on the vector (with respect to the gauge group) ψ. As every Lie algebra
element, Aµ can be written as linear combination of the Lie algebra generators Ta, which fulfill the
commutation relations

[Ta,Tb] = i f cab Tc .

Thus one defines
Aµ(x) := AaµTa .

Note that that gauge degrees of freedom are conventionally labeled with Latin indices. The field-strength
tensor Fµν is defined by

ig Fµν := ig F aµνTa := [Dµ, Dν ] .

d) Show that this definition of the field–strength tensor coincides with its definition in component
form, i.e. that

Fµν =
[
∂µA

a
ν − ∂νAaµ − g f abcAbµAcν

]
Ta .

e) What is the simplest, i.e. lowest order, Lorentz– and gauge–invariant expression that can be formed
from Fµν?

8 Abelian Higgs Mechanism**
Consider a theory with a complex scalar field φ(x) and a U(1) gauge symmetry with a gauge boson Aµ(x).
The Lagrangian density is given by

L = (Dµφ) (Dµφ)∗ + µ2 φ∗φ− λ

2 (φ∗φ)2 − 1
4FµνF

µν .



Here Fµν is the Abelian field strength tensor and Dµ is the gauge covariant derivative given by

Fµν := ∂µAν − ∂ν Aµ and Dµ := ∂µ + i eAµ ,

respectively. This Lagrangian is invariant under the gauge transformation

φ(x)→ eiα(x) φ(x), Aµ(x)→ Aµ(x)− 1
e
∂µα(x) .

Assume that µ2 > 0 and λ > 0.

a) Show that the field φ develops a vacuum expectation value 〈φ〉 and determine v := |〈φ〉|.

b) Is there any freedom in choosing 〈φ〉? Why?

c) To quantize the theory we have to expand the field φ(x) around the true minimum of the potential.
Therefore, parametrize

φ(x) = ei ξ(x)/v (v + σ(x)) ,

and rewrite the initial Lagrangian in terms of the real scalar fields ξ(x) and σ(x).
Hint: Do not expand terms which are non–quadratic in the fields. Factor out (1 + σ

v
) whenever possible.

d) What happens to the gauge symmetry of the theory? What is the symmetry of the ground state?
What is special about ξ(x)?

e) Summarize the total number of real degrees of freedom of this theory. Which of the fields are
physical and why can you tell that they are (un)physical?

f) Perform an adequate gauge transformation to show explicitly that all unphysical fields can be made
to disappear from the Lagrangian. Determine the masses of all remaining scalar fields and gauge
bosons. What is the total number of real degrees of freedom now?

9 Fermion masses from spontaneous symmetry breaking**
Consider a theory of a single complex scalar field φ(x) ∈ C and two Dirac fermion fields Ψ1(x) and Ψ2(x).
The Lagrangian is given by

L = (∂µφ)†(∂µφ)−m2|φ|2 − λ|φ|4+
+ Ψ1i∂µγµΨ1 + Ψ2i∂µγµΨ2 −m1Ψ1Ψ1 −m2Ψ2Ψ2 − g(φΨ1Ψ2 + φ†Ψ2Ψ1)

where m2, m1, m2, λ, g are all real positive coupling constants of the appropriate mass dimension.

a) What is the maximal symmetry of the theory if g = 0?

b) What is the maximal symmetry of the theory if g 6= 0?

c) For g 6= 0 give a possible charge assignment of the different fields under the given symmetry.

d) Suppose that m2 < 0 while the other parameters are still positive. What is the symmetry of the
ground state?

e) In the latter case, find the masses of the physical fermions.
Hint: Write the scalar field as φ = v+ 1√

2 (σ(x)+iρ(x)) where v is the minimum of the potential and expand
the Lagrangian in terms of the new variables.

10 Higgs decay to Fermions***
A general formula for the rate of of two-body decays ki → k1 + k2 is given by

Γ =
∫ d3k1

(2π)3 2k0
1

d3k2

(2π)3 2k0
2
|T |2 1

2k0
i

(2π)4
δ(4) (ki − k1 − k2) ,

where ki, k1, k2 are the four-momenta of the initial and final state particles and T is the transition matrix
element.



a) Simplify this formula for decays in the rest frame of the initial particle. Hint: δ(f(x)) =
∑
x0
δ(x−

x0)|f ′(x0)|−1 where x0 are the (simple) zeros of f(x).

b) The Lagrangian for Higgs-fermion interaction with Yukawa coupling yf has been given in the lecture.
Use this to compute the matrix element T and its absolute square.

You may find the following identities helpful:
(here u and v are spinor solutions of the free Dirac equation

(
/p−m

)
us(p) = 0,

(
/p+m

)
vs(p) = 0 where s

denotes the spin, Γ stands for any combination of gamma matrices, and the slash is defined as /p := γµpµ)

(ū1Γu2)∗ = ū2Γ̄u1 ,∑
s

us(p)ūs(p) = /p+m ,
∑
s

vs(p)v̄s(p) = /p−m .

c) Combine these results to compute the partial decay with of a Higgs boson to a pair of leptons.
What would be different for quarks?

d) What is the branching fraction of h→ e+e− as compared to h→ µ+µ−?

e) The production cross section for a Higgs from a proton-proton collision at the LHC at center-of-mass
energy of 13 TeV is about O(50) pb. The total recorded luminosity is about 140 fb−1. The Higgs
mass is about mh = 125 GeV and the total decay width in the Standard Model is Γh,tot = 4 MeV.
How many h→ e+e− events do you expect in the data already? How many at the high luminosity
LHC (HL-LHC) with 3000 fb−1? Given the constraints on yµ shown in the lecture, what constraints
(very roughly) would you expect on ye in the future?

11 Charged pion decay, chiral enhancement and parity violation in the SM***
Consider the charged pion decay π+ → `+ν` into a lepton ` = e, µ and its neutrino ν`. In terms of quarks
π+ = ud̄.

a) What prohibits the energetically allowed decays π+ → `+ + γ?

b) From naive phase space considerations, what branching ratio Γ(π+ → e+νe)/Γ(π+ → µ+νµ) would
you expect for this decay?

c) Draw the Feynman diagram for this process. Regarding the coupling vertices, do not forget about
quark mixing.

d) The leptonic matrix element can easily be computed and is given by

〈`+ν`|ν̄`γµ(1− γ5)`|0〉 = ūν`
γµ(1− γ5)v`+ .

By contrast, the hadronic matrix element contains the bound state pion and cannot be straightfor-
wardly computed. However, using Lorentz invariance and dimensional analysis we can parametrize
it as

〈0|d̄γµ(1− γ5)u|π+〉 = −fπpµπ ,
where pπ is the four-momentum of the pion and fπ a constant of dimension [mass]1 that is called
the pion decay constant. This constant contains all of our ignorance of the inner structure of the
pion (from the absolute decay rate Γ(π+ → µ+νµ) one can extract fπ ≈ 130 MeV but the numerical
value is unimportant for this exercise).

e) Using these matrix elements, compute the total matrix element for the decay and use the Dirac
equation on the outer legs to simplify its form.

f) Confirm that the matrix element, and therefore the decay amplitude, vanishes if m` = 0. Interpret
this in view of the helicities of the outgoing particles and angular momentum conservation.

g) Compute the squared matrix element |M|2 and simplify it, eventually using that tr
(
γµγνγ5) = 0.

h) Use the general formula for two body decays stated in exercise 10 to compute the differential decay
amplitude and total decay width in the pion rest frame.

i) Compute the branching ratio Γ(π+ → e+νe)/Γ(π+ → µ+νµ) and compare to the experimentally
determined value which is 1.230(4)× 10−4, how does that compare to the naive expectation?



12 e+ + e− → µ+ + µ−***
A general Lorentz invariant expression for the cross section of a two particle reaction with four-momenta
pa + pb → p1 + p2 is given by

dσ = 1

4
√

(pa · pb)2 −m2
am

2
b

|M|2 (2π)4
δ(4) (p1 + p2 − pa − pb)

dp3
1

(2π)3 2p0
1

dp3
2

(2π)3 2p0
2
,

whereM is the transition matrix element to be computed by Feynman rules.

a) Find the differential cross section dσ/dΩ in the center of mass frame for the case of negligible masses
ma = mb = m1 = m2 = 0, with the relevant scattering angle θ defined as the angle between ~pa and
~p1.

b) For the process e+ + e− → µ+ + µ−, determine the matrix elementM from the Feynman rules of
QED (if you don’t know where to find those, see e.g. the Appendix of Peskin&Schröder).

c) Compute the differential cross section dσ/dΩ for this process as a function of the scattering angle
θ assuming (i) unpolarized electrons in the initial state and (ii) the approximation that the center
of mass energy s := (pa + pb)2 � m2

e,µ (effectively setting me,µ = 0).

You may use the following identities:
(here u and v are spinor solutions of the free Dirac equation

(
/p−m

)
us(p) = 0,

(
/p+m

)
vs(p) = 0 where s

denotes the spin, Γ stands for any combination of gamma matrices, and the slash is defined as /p := γµpµ)

(ū1Γu2)∗ = ū2Γ̄u1 ,∑
s

us(p)ūs(p) = /p+m ,
∑
s

vs(p)v̄s(p) = /p−m ,

tr
(
/aγµ/bγν

)
= 4 (aµbν + aνbµ − ηµνa · b) .

13 Group theoretical anomaly coefficient***
For a simple Lie algebra, the anomaly coefficient A(r) of a representation r is defined by

A(r) dabc := tr
[
Tar{Tbr,Tcr}

]
,

where Tar are the generators of a representation r and dabc is an invariant totally symmetric tensor.

a) Explain why the anomaly function of a gauge theory based on a simple Lie group with chiral
fermions in the representation r is proportional to A(r).
Hint: Think about the derivation of the anomaly based on triangle diagrams.

b) Show that A(r̄) = −A(r) for the complex conjugate representation r̄. What does this imply for
(pseudo–)real representations?

In general, one can show that A(r) vanishes for all simple Lie algebras except SU(N) with N ≥ 3.

14 Gauge anomalies of the Standard Model***
Show that the Standard Model (SM) is free of gauge anomalies. Several considerations might be helpful:

• The SM gauge group is SU(3)c ⊗ SU(2)L ⊗ U(1)Y, you may look up the field content in a book of
your choice.

• As in the previous exercise, the relevant part for the vanishing of the anomalies are the traces over
the generators of the respective gauge group.

• Be particularly careful with the mixed anomalies such as [U(1)Y] [SU(3)c]2, etc.

• Keep in mind that the generators of SU(N) are traceless.

What can you say about the contributions to the anomalies within one generation of matter fields? How
do the anomalies change if you add a right–handed neutrino in the representation (1,1)0? Can you relate
the anomaly freedom of SO(10) to the anomaly freedom of the SM?



15 Global symmetries, anomalies, and topological vacuum terms of the Standard Model***
The structure of the SM is such that it gives rise to the accidental global symmetries U(1)B and U(1)L
corresponding to the classically conserved quantities of baryon (B) and lepton number (L). The corres-
ponding charges thus are +1/3 for all types of quarks under U(1)B and +1 for all types of leptons under
U(1)L.

a) Show that U(1)B and U(1)L both are anomalous. What are the physical implications?

Now add three right–handed neutrinos in the SM representation (1,1)0.

b) Show now that U(1)B−L is anomaly free but U(1)B+L is still anomalous.

This implies that U(1)B−L may actually be gauged in GUT models which come with right–handed
neutrinos (such as for example the SO(10) model). On the contrary, the anomalous violation of U(1)B+L
occurs in instanton and sphaleron processes. The latter might be relevant for Baryogenesis.

c) The QCD gauge group SU(3)c has a physical θ parameter (see lecture). Why do neither U(1)Y nor
SU(2)L have physical θ parameters?


