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Selection of recommended books

• Peskin & Schröder – Quantum Field Theory
• Srednicki – Quantum Field Theory
• Sheng & Li – Gauge theory of elementary particle physics
• Schwartz – Quantum Field Theory and the Standard Model
• Weinberg – The Quantum Theory of Fields

• Griffith – Introduction to Elementary Particles
• Halzen & Martin – Quarks and Leptons

Feel free to ask me for other resources if you are in need.
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Outline

I. Basic introduction and concepts

– Symmetries
– Quantum Electrodynamics (QED)
– Spontaneous symmetry breaking

II. A model of leptons

– Non-Abelian gauge theories
– Electro-weak unification

III. The three generation Standard Model

– Flavor structure and CP violation
– Puzzles and problems of the Standard Model
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Introduction
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Four fundamental forces
Gravitational

apples,
stellar systems,

galaxies,
the Universe,
black holes

Strong
nuclei,

baryons&mesons,
α-decays,

confinement

Electromagnetic
atoms, crystals,

tables, walls,
radio, x-ray,

sound, γ-decays

Weak
β-decays,

parity violation,
CP violation,

neutrino
interactions,
solar energy

Major achievement of the
Standard Model (SM):
Electro-weak unification
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Fundamental matter

This and other figures are used under the creative commons license.
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Fundamental concepts
The SM is a relativistic quantum field theory (QFT).

|ψ〉, H
unitarity

~E, ~B, L
locality

xµ = (t, ~x),
SO(1, 3)
causality

Absolute key in the formulation: Symmetries!

Noether (1918):
Continuous symmetries⇔ conservation laws.
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Symmetries and conservation laws

Symmetry / invariance conservation law

time translation invariance ↔ conservation of energy

spatial translations ↔ conservation of momentum

rotational invariance ↔ angular momentum conservation

gauge invariance ↔ conservation of “charge”

Note: The laws are invariant, this does not mean that every
meaningful “object” is invariant!

“Objects” are representations of symmetries.

Examples: 3-vector is 3-dim. representation of SO(3).
spin-1/2 “spinor” is 2-dim. representation of SU(2).

SM gauge symmetry is SU(3)color ⊗ SU(2)left ⊗U(1)hypercharge

Objects: elementary quantum fields (particles); charged under these
symmetries.
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Poincaré / Lorentz group representations
Invariance under full Poincaré group of 3 + 1-dim. space-time
• translations (space and time)

• rotations (space)

• boosts

 Lorentz group SO(1, 3)
ηµν = ± diag (+,−,−,−)

Representations of the Lorentz / Poincaré group are classified by
their mass and spin. (Wigner, ’39) (JPC clasification of states.)
Skipping (a lot of interesting) technicalities, the representations of the
Lorentz group can be classified as representations of

sl(1, 3) ∼= sl(2,C) ∼= su(2)⊕ su(2)
(this makes life very easy, because this behaves spimply like the well known “spin”×“spin”)

Label of representation common name typical symbol

(0, 0) scalar” (invariant) φ
(1/2, 0) “left-handed Weyl spinor” ψL
(0, 1/2) “right-handed Weyl spinor” ψR
(1/2, 1/2) “vector” Aµ
(1/2, 0)⊕ (0, 1/2) “Dirac spinor” (composite!) Ψ
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Poincaré / Lorentz group representations
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Important things to note
We work in natural units, i.e. set

~ = c = 1 .

Thus, dimensions work out as

[E] = [p] = [m] =
1

[L]
=

1

[t]
= GeV .

To restore units use dimensional analysis and
~ c ≈ 200 MeV fm .

(This is a relation worth memorizing).

Disclaimer for the whole lecture
Given the scope of this lecture we will to a large extent skip the subjects of:

• gauge-fixing / ghosts ,

• renormalization ,

• quantum (loop) corrections , . . . and many more details. . .

So be aware that our discussion will be largely superficial, noting that an accurate
formulation of quantum field theory, renormalization, the treatment of spontaneously
broken gauge symmetries, etc. requires much more care.
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Dirac Theory / Quantum
Electrodynamics (QED)
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Quantum Electrodynamics (QED)

QED is the protoype of a quantum field theory (QFT).

For any (Q)FT (schematically):

Partition function Z =

∫
Dφ eiS with S =

∫
d4x L(φ, ∂µφ) .

Stationary action S ⇔ equations of motion

∂µ

(
∂ L

∂ (∂µφ)

)
− ∂ L
∂φ

= 0 .

(Euler-Lagrange equations)
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Quantum Electrodynamics (QED)
Consider Dirac fermion Ψ(x) charged under global symmetry.

Transformation under global U(1) ransformation:

Ψ(x) 7→ eiqΨ(x) .

Symmetry and Lorentz invariant Lagrangian (m ∈ R w.l.o.g.):

L = iΨγµ∂µΨ−mΨΨ .

Gamma matrices C4×4, with {γµ, γν} = 2ηµν1.
In “chiral” / “Weyl” basis:

γµ :=

(
0 σµ

σµ 0

)
,

with σµ = (1, σi), σµ = (1,−σi) ,
and Pauli matrices σi=1,2,3.

Definitions: Ψ := Ψ† γ0, γ5 := iγ0γ1γ2γ3 =
(
−1 0

0 1

)
.

Conserved U(1)⇒ conserved charge q, with conserved current

jµ(x) = ΨγµΨ , with ∂µj
µ = 0 .
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Quantum Electrodynamics (QED)

QED is the theory of a Dirac fermion Ψ(x) charged under local U(1).

Transformation under local U(1) gauge transformation:

Ψ(x) 7→ eiα(x)Ψ(x) and Aµ(x) 7→ Aµ(x) +
1

e
∂µα(x) .

The corresponding gauge and Lorentz invariant Lagrangian:

LQED = iΨγµDµΨ−mΨΨ− 1

4
FµνF

µν .

Here:

Dµ := ∂µ − ieAµ(x) and Fµν := ∂µAν − ∂νAµ.
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Quantum Electrodynamics (QED)
Euler-Lagrange equation of motion for Aµ

∂µF
µν = ejν , and ∂µF̃

µν ≡ 1

2
∂µε

µνρσFρσ = 0 .

(Maxwell’s equations!)

Euler-Lagrange equation of motion for Ψ:

Ψ (iγµ∂µ −m) Ψ = −eAµΨγµΨ .

(Dirac equation)

−ieΨ

(
γµF1(q2)− [γµ, γν ] qνF2(q2)

4m

)
Ψ

ae = F2(q2 → 0) =
α

2π
+ . . .

~ωs = ge
e

2m
~B ≡ (ae + 1)

e

m
~B

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 15/ 52



Quantum Electrodynamics (QED)
Euler-Lagrange equation of motion for Aµ

∂µF
µν = ejν , and ∂µF̃

µν ≡ 1

2
∂µε

µνρσFρσ = 0 .

(Maxwell’s equations!)

Euler-Lagrange equation of motion for Ψ:

Ψ (iγµ∂µ −m) Ψ = −eAµΨγµΨ .

(Dirac equation)

−ieΨ

(
γµF1(q2)− [γµ, γν ] qνF2(q2)

4m

)
Ψ

ae = F2(q2 → 0) =
α

2π
+ . . .

~ωs = ge
e

2m
~B ≡ (ae + 1)

e

m
~B

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 15/ 52



Quantum Electrodynamics (QED)
Euler-Lagrange equation of motion for Aµ

∂µF
µν = ejν , and ∂µF̃

µν ≡ 1

2
∂µε

µνρσFρσ = 0 .

(Maxwell’s equations!)

Euler-Lagrange equation of motion for Ψ:

Ψ (iγµ∂µ −m) Ψ = −eAµΨγµΨ .

(Dirac equation)

−ieΨ

(
γµF1(q2)− [γµ, γν ] qνF2(q2)

4m

)
Ψ

ae = F2(q2 → 0) =
α

2π
+ . . .

~ωs = ge
e

2m
~B ≡ (ae + 1)

e

m
~B

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 15/ 52



Quantum Electrodynamics (QED)
Euler-Lagrange equation of motion for Aµ

∂µF
µν = ejν , and ∂µF̃

µν ≡ 1

2
∂µε

µνρσFρσ = 0 .

(Maxwell’s equations!)

Euler-Lagrange equation of motion for Ψ:

Ψ (iγµ∂µ −m) Ψ = −eAµΨγµΨ .

(Dirac equation)

−ieΨ

(
γµF1(q2)− [γµ, γν ] qνF2(q2)

4m

)
Ψ

ae = F2(q2 → 0) =
α

2π
+ . . .

~ωs = ge
e

2m
~B ≡ (ae + 1)

e

m
~B

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 15/ 52



Quantum Electrodynamics (QED)
Euler-Lagrange equation of motion for Aµ

∂µF
µν = ejν , and ∂µF̃

µν ≡ 1

2
∂µε

µνρσFρσ = 0 .

(Maxwell’s equations!)

Euler-Lagrange equation of motion for Ψ:

Ψ (iγµ∂µ −m) Ψ = −eAµΨγµΨ .

(Dirac equation)

−ieΨ

(
γµF1(q2)− [γµ, γν ] qνF2(q2)

4m

)
Ψ

ae = F2(q2 → 0) =
α

2π
+ . . .

~ωs = ge
e

2m
~B ≡ (ae + 1)

e

m
~B

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 15/ 52



Quantum Electrodynamics (QED)
Euler-Lagrange equation of motion for Aµ

∂µF
µν = ejν , and ∂µF̃

µν ≡ 1

2
∂µε

µνρσFρσ = 0 .

(Maxwell’s equations!)

Euler-Lagrange equation of motion for Ψ:

Ψ (iγµ∂µ −m) Ψ = −eAµΨγµΨ .

(Dirac equation)

−ieΨ

(
γµF1(q2)− [γµ, γν ] qνF2(q2)

4m

)
Ψ

ae = F2(q2 → 0) =
α

2π
+ . . .

~ωs = ge
e

2m
~B ≡ (ae + 1)

e

m
~B

ath
e = 1.159 652 182 032(13)(12)(720)× 10−3

aexp
e = 1.159 652 180 91(26)× 10−3
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Quantum Electrodynamics (QED)
Recall: Dirac fermion is composite (1/2, 0)⊕ (0, 1/2)!

Let’s expose this more clearly: Ψ(x) :=

(
ψL(x)

ψR(x)

)
.

y can rewrite Dirac equation as two coupled equations:

ψ†R iσµ∂µ ψR = mψ†RψL ,

ψ†L iσµ∂µ ψL = mψ†LψR .

The independent equations for ψL,R are coupled only by the
Dirac-mass term

mΨΨ = mψ†RψL +mψ†LψR .

Including the vector-like electron-photon vertex

−eAµΨγµΨ = − eAµ
(
ψ†Rσ

µψR + ψ†Lσ
µψL

)
.

Note: U(1) acts vector-like(≡same on left and right) on the fermions

ψL,R(x) 7→ eiα(x)ψL,R(x) .

⇒ QED automatically conserves parity transformation “ψL ↔ ψR”.

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 16/ 52



Quantum Electrodynamics (QED)
Recall: Dirac fermion is composite (1/2, 0)⊕ (0, 1/2)!

Let’s expose this more clearly: Ψ(x) :=

(
ψL(x)

ψR(x)

)
.

y can rewrite Dirac equation as two coupled equations:

ψ†R iσµ∂µ ψR = mψ†RψL ,

ψ†L iσµ∂µ ψL = mψ†LψR .

The independent equations for ψL,R are coupled only by the
Dirac-mass term

mΨΨ = mψ†RψL +mψ†LψR .

Including the vector-like electron-photon vertex

−eAµΨγµΨ = − eAµ
(
ψ†Rσ

µψR + ψ†Lσ
µψL

)
.

Note: U(1) acts vector-like(≡same on left and right) on the fermions

ψL,R(x) 7→ eiα(x)ψL,R(x) .

⇒ QED automatically conserves parity transformation “ψL ↔ ψR”.

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 16/ 52



Quantum Electrodynamics (QED)
Recall: Dirac fermion is composite (1/2, 0)⊕ (0, 1/2)!

Let’s expose this more clearly: Ψ(x) :=

(
ψL(x)

ψR(x)

)
.

y can rewrite Dirac equation as two coupled equations:

ψ†R iσµ∂µ ψR = mψ†RψL ,

ψ†L iσµ∂µ ψL = mψ†LψR .

The independent equations for ψL,R are coupled only by the
Dirac-mass term

mΨΨ = mψ†RψL +mψ†LψR .

Including the vector-like electron-photon vertex

−eAµΨγµΨ = − eAµ
(
ψ†Rσ

µψR + ψ†Lσ
µψL

)
.

Note: U(1) acts vector-like(≡same on left and right) on the fermions

ψL,R(x) 7→ eiα(x)ψL,R(x) .

⇒ QED automatically conserves parity transformation “ψL ↔ ψR”.

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 16/ 52



Quantum Electrodynamics (QED)
Nobel prize Feynman, Schwinger, Tomonaga 1965

Important general lessons

• Conservation of the (electric) current tied to global symmetry.
Gauge principle:

• Gauge invariance dictates interactions and (partially) the
degrees of freedom.

• Gauge invariance strictly prohibits mass for Aµ (photon).

• Observables are gauge invariant.

• Gauge “symmetry” should be viewed as a redundancy: States
related by gauge transformations are physically
indistinguishable.

• (not shown): Gauge invariance holds up in the quantum theory
(“anomaly freedom”).
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Spontaneous symmetry breaking
(in “scalar QED” or “Abelian Higgs model”)

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 18/ 52



Spontaneous symmetry breaking (SSB)
“SSB”: System (Lagrangian) has a symmetry, but present state
(typically ground state, or vacuum) is not symmetric.

A very common phenomenon in nature.

SSB for gauge theories is the worst name ever invented because
symmetry is actually not broken but just non-linearly realized.
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Example: Scalar QED
Consider complex scalar field charged under U(1) gauge

φ(x) 7→ eiα(x)φ(x) and Aµ(x) 7→ Aµ(x) +
1

e
∂µα(x) .

Invariant Lagrangian density:

LsQED = (Dµφ)∗ (Dµφ)− V (φ)− 1

4
FµνF

µν .

with potential (µ2 > 0, λ > 0)

V (φ) = −µ2|φ|2 +
λ

2
|φ|4 .

Equations of motion have classical solution,

〈0|φ(x)|0〉 = const. =: v ,

“vacuum expectation value” (VEV)

that minimizes the potential energy.
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Example: Scalar QED
Thus, it makes sense to expand theory around 〈φ(x)〉 = v:

φ(x) = ei ξ(x)/v (v + σ(x)) .

Expanding the Lagrangian, there are terms

LsQED ⊃ · · ·+ e2φ∗φAµA
µ + i e [φ∗ (∂µφ)− φ (∂µφ

∗)]Aµ + . . .

→ · · ·+ e2v2AµA
µ + . . . .

This is indicative of the fact that SSB generates a mass term for the
gauge boson

mA =
√

2e v .

We can pick a gauge to eliminate ξ(x) from the theory. In this gauge
(called “unitary gauge”) the “wanna-be Goldstone” mode ξ(x)
becomes the longitudinal mode of the, then massive, gauge boson.

This is at the heart of the Brout-Englert-Higgs mechnanism.
You will show this in the exercises.
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Spontaneous symmetry breaking (SSB)

• For continuous global symmetries:

Each spontaneously broken symmetry generator implies
massless scalar degree of freedom (Nambu-Goldstone boson).

Nobel prize Nambu 2008

• For gauge theories:

SSB can happen but the Goldstone bosons are unphysical
degrees of freedom.
Via the so-called Brout-Englert-Higgs mechanism the
“wanna-be” Goldstone bosons provide a consistent way to
generate masses for gauge boson without spoiling gauge
invariance.

Nobel prize Englert and Higgs 2013
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Non-Abelian gauge theories
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Non-Abelian symmetry groups
U(1) is a group “generated” by charge q, U ∈ U(1) with U = eiqα.

Instead of exponentiating numbers, we can exponentiate matrices!

generators = matrices .

Example: SU(n). “Unitary”: U†U = 1. “Special”: detU = 1.

All matrices in SU(n) can be written as

U = eiTaαa (a = 1, . . . , n2 − 1) .

The fixed matrices [Ta]ij are called generators and they can be
chosen traceless and hermitean. (the dimensions of ij decide dimension of representation r)

For n = 2, well known SU(2) with a = 1, 2, 3 and the generators Ta

being the Pauli matrices:

T1 =
1

2

(
0 1

1 0

)
, T2 =

1

2

(
0 −i

i 0

)
, T3 =

1

2

(
1 0

0 −1

)
.

In general, the generators do not commute≡non-Abelian:[
Ta,Tb

]
= i fabc Tc .

fabc are called the structure constants. For SU(2): fabc = εabc .
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chosen traceless and hermitean. (the dimensions of ij decide dimension of representation r)

For n = 2, well known SU(2) with a = 1, 2, 3 and the generators Ta

being the Pauli matrices:

T1 =
1

2

(
0 1

1 0

)
, T2 =

1

2

(
0 −i

i 0

)
, T3 =

1

2

(
1 0

0 −1

)
.

In general, the generators do not commute≡non-Abelian:[
Ta,Tb

]
= i fabc Tc .

fabc are called the structure constants. For SU(2): fabc = εabc .

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 24/ 52



Non-Abelian symmetry groups
U(1) is a group “generated” by charge q, U ∈ U(1) with U = eiqα.

Instead of exponentiating numbers, we can exponentiate matrices!

generators = matrices .

Example: SU(n). “Unitary”: U†U = 1. “Special”: detU = 1.
All matrices in SU(n) can be written as

U = eiTaαa (a = 1, . . . , n2 − 1) .

The fixed matrices [Ta]ij are called generators and they can be
chosen traceless and hermitean. (the dimensions of ij decide dimension of representation r)

For n = 2, well known SU(2) with a = 1, 2, 3 and the generators Ta

being the Pauli matrices:

T1 =
1

2

(
0 1

1 0

)
, T2 =

1

2

(
0 −i

i 0

)
, T3 =

1

2

(
1 0

0 −1

)
.

In general, the generators do not commute≡non-Abelian:[
Ta,Tb

]
= i fabc Tc .

fabc are called the structure constants. For SU(2): fabc = εabc .

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 24/ 52



Non-Abelian symmetry groups
U(1) is a group “generated” by charge q, U ∈ U(1) with U = eiqα.

Instead of exponentiating numbers, we can exponentiate matrices!

generators = matrices .

Example: SU(n). “Unitary”: U†U = 1. “Special”: detU = 1.
All matrices in SU(n) can be written as

U = eiTaαa (a = 1, . . . , n2 − 1) .

The fixed matrices [Ta]ij are called generators and they can be
chosen traceless and hermitean. (the dimensions of ij decide dimension of representation r)

For n = 2, well known SU(2) with a = 1, 2, 3 and the generators Ta

being the Pauli matrices:

T1 =
1

2

(
0 1

1 0

)
, T2 =

1

2

(
0 −i

i 0

)
, T3 =

1

2

(
1 0

0 −1

)
.

In general, the generators do not commute≡non-Abelian:[
Ta,Tb

]
= i fabc Tc .

fabc are called the structure constants. For SU(2): fabc = εabc .
Andreas Trautner Introduction to the Standard Model, 12-14.07.21 24/ 52



Non-Abelian gauge theories – Yang-Mills theories
Exactly as in the case of U(1), we can also demand invariance under
local SU(n):

Ψ(x) 7→ U(x)Ψ(x) ≡ eiTaαa(x)Ψ(x) .

The gauge covariant derivative then is given by

[Dµ]ij := 1ij∂µ − igAµ(x)aTaij .

The field strength tensor then is given by

ig Fµν := ig F aµνTa := [Dµ, Dν ] ,

and spelled out

F aµν =
[
∂µA

a
ν − ∂νAaµ − g f abcAbµAcν

]
.

The gauge-kinetic term is

LYM = − 1

4
F aµν F

µν,a .

⇒ Non-Abelian gauge theories have self-interacting gauge bosons.

Nobel prize ’t Hooft and Veltman 1999
(for renormalization of spontaneously broken NA gauge theories)
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A model of leptons:
Electroweak unification
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A model of Leptons
Consider now a theory of fermions, gauge bosons and scalars with
gauge symmetry

SU(2)L ×U(1)Y “left” × “hypercharge” .

Fields:

L =

(
νL

eL

)
, eR, H =

(
φ+

φ0

)
.

L eR H

Lorentz (1/2, 0) (0, 1/2) (0, 0)

r [SU(2)L] 2 1 2

qY [U(1)Y] −1/2 −1 1/2

Note: All fermions we introduce are chiral Weyl spinors, but we use a trick to write them
in terms of Dirac fermions

ΨL := PLΨ =
1

2
(1− γ5)Ψ =

(
1 0

0 0

)(
ψL

ψR

)
=

(
ψL

0

)
.

Crucial: chiral charge assignment for fermions
⇔ P violation in SM is “explicit and maximal”, (not spontaneous!)

Note: chiral charge assigments⇒ no possible fermion mass terms

ψ†RψL , ψ†LψR , ψL ψL , ψR ψR .
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A model of Leptons
Electroweak Lagrangian:

LEW = Lkinetic + Lgauge + LHiggs + LYukawa .

with

Lkinetic = iLγµDµL+ i eRγ
µDµeR + (DµH)†(DµH) ,

Lgauge = − 1

4
Bµν B

µν − 1

4
W a
µνW

µν,a ,

LHiggs = µ2H†H − λ

2

(
H†H

)2
, (µ2 > 0, λ > 0)

LYukawa = − ye LH eR + h.c. , (ye ∈ R, w.l.o.g.)

Gauge covariant derivatives (depends on charges of resp. field)

Dµ =
(
∂µ − ig′qYBµ

)
1− igTaW a

µ .

Potential is set up for spontaneous symmetry breaking.
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A model of Leptons

H =

(
φ+

φ0

)
=

1√
2

(
ϕ2 + iϕ3

ϕ0 + iϕ1

)
=

1√
2

ei Ta ξa(x)

(
0

h(x)

)

V (H) = − µ2

2

(
ϕ2

0 + ϕ2
1 + ϕ2

2 + ϕ2
3

)
+
λ

8

(
ϕ2

0 + ϕ2
1 + ϕ2

2 + ϕ2
3

)2
.

Note: Higgs potential is accidentially SU(2)× SU(2) ∼= SO(4) symmetric (custodial
symmetry).

Any VEV 〈H〉 with strength |〈H〉| = v/
√

2 = µ/
√
λ 6= 0 breaks

SU(2)L ×U(1)Y
〈H〉−−→ U(1)em ,

T3 + Y = Q .

We can use SU(2) gauge rotation to absorb the Goldstone bosons
ξa=1,2,3(x)(“unitary gauge”) to make H look like

H(x) =
1√
2

(
0

v + h(x)

)
.
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A model of Leptons
Taking into account the VEV, mass eigenstates arise as

W±µ =
1√
2

(
W 1
µ ± iW 2

µ

)
,

(
Zµ

Aµ

)
=

(
cW sW

−sW cW

)(
W 3
µ

Bµ

)
,

where

sW ≡ sin(θW ) =
g′√

g2 + g′2
, cW ≡ cos(θW ) =

g√
g2 + g′2

.

The VEV induces physical gauge boson masses

mW± =
g v

2
, mZ =

g v

2 cW
, mA = 0 .

Other often used relations

e =
g g′√
g2 + g′2

,
g2

8m2
W

=
GF√

2
.

Nobel price Glashow, Salam, Weinberg 1979

Nobel price Rubbia and van der Meer 1984
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A model of Leptons
After SSB the Lagrangian contains gauge boson couplings

Aµ × eQ (eLγ
µeL + eRγ

µeR) ≡ eAµ j
µ
em ,

with Q := ev(T3) + Y .

Zµ ×
g

cW
(gL eLγ

µeL + gR eRγ
µeR) ≡ g

cW
Zµ j

µ
n.c. ,

with gL := ev(T3)−Qs2
W , gR := Qs2

W ,

W+
µ ×

g√
2

(νLγ
µeL) + h.c. ≡ g√

2
W+
µ jµc.c. + h.c. .

Historically important: for q2 � m2
W,Z

ρ :=
2Mc.c. × jµn.c.jn.c.µ

Mn.c. × jµc.c.jc.c.µ

=
2 g

2

2
1

m2
W

g2

c2
W

1
m2
Z

=
m2
Z c

2
W

m2
W

= 1 !

This is a consequence of custodial symmetry, i.e. the specific breaking of EWSB by H = 21/2.
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A model of Leptons

Fermion (Dirac) masses after SSB.

−LYukawa = ye LH eR + h.c. =

unitary gauge−−−−−−−−→ ye√
2

(
νL eL

)( 0

v + h

)
eR + h.c. =

ye v√
2
e†LeR +

ye√
2
h e†LeR + h.c.

The VEV induces a Dirac mass for the charged lepton, and
Higgs boson couplings proportional to mass/VEV

me =
ye v√

2
, ghe+e− =

ye√
2

=
me

v
.
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Adding quarks
Quarks as chiral fermions, in fundamental representation 3 of SU(3),
the gauge group of Quantum Chromodynamics (QCD).
Full gauge symmetry:

SU(3)c(olor) × SU(2)L ×U(1)Y .

Quark fields:

QL =

(
uL

dL

)
, uR, dR .

Q uR dR

Lorentz (1/2, 0) (0, 1/2) (0, 1/2)

r [SU(3)c] 3 3 3

r [SU(2)L] 2 1 1

qY [U(1)Y] 1/6 2/3 −1/3

−LYuk. = yuQ
α

L H̃ uαR + ydQ
α

LH dαR + h.c.

(w.l.o.g. yu, yd ∈ R)
H̃ := iσ2H∗ (H̃ transforms as 2∗ = 2 of SU(2)L but has opposite hypercharge −1/2).

SU(3) is unbroken, but becomes strongly coupled at low energies to
confine quarks into baryons and mesons→ QCD lecture.

Nobel prize Gross, Politzer, Wilczek 2004
(for discovery of asymptotic freedom in QCD)
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Parity violation in Nature
Weak interaction violates parity (by construction).

W+
µ ×

g√
2

(νLPLγ
µeL) + h.c. PL =

1

2
(1− γ5)

This describes experimental fact of “(V −A)” weak interactions.

Leff =
GF√

2

(
uγµ(1− γ5)d

)
×
(
νγµ(1− γ5)e

)

For example: 1) π+(= |ud〉) −→ e+ + νe

2) Famous ’56
Wu experiment
60
27Co→ 60

28Ni∗ + e− + νe

Nobel prize Lee and Yang 1957
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Anomaly freedom of the SM
A symmetry of the classical action S is not necessarily a symmetry of the full
quantum theory. Quantum corrections may not obey the symmetry.

Z Sym.7−−−→
∫
DΨDΨ ei

∫
A eiS[Ψ,Ψ] .

“Anomaly coefficient”A

A ∝
∑

chiral fermions

tr
(

Ta
{

Tb,Tc
})

.

• For gauge symmetries: Anomalies must cancel for consistency.
• For global symmetries: a very different issue. Anomalies are important

for phenomenology, e.g. π0 → γγ.
• Anomalies are always associated with chiral Fermions. Anomaly

freedom automatic for symmetries that act vector-like (e.g. QED, QCD).
• SM: Anomalies cancel within each generation. (exercises)

(SU(3)× . . . ), (SU(2)× . . . ), SU(3)3, SU(2)3, U(1)×SU(2)2, U(1)×SU(3)2, U(1)3.

This unveils a very delicate balance of charges in the SM whose origin we do
not understand.
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The three generation Standard Model
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Three generations
Empirically it is a fact that matter fermions come in three copies which
are identical representations under all symmetries.

“Who ordered that?” (I.I. Rabi 1936)

Modelling: simply (QL, uR, dR, L, eL)i with i = 1, 2, 3 .

Three “generations” or “families” of different “flavors”.

−LYuk. = Q
i
H̃ yiju u

j
R +Q

i
H yijd d

j
R + L

i
H yije e

j
R + h.c. ,

yu, yd, ye ∈ C
3×3 .

Many new parameters and possibility of physical complex couplings!

Naming scheme of the mass eigenstates:

Quarks Leptons
u(p) c(harm) t(op) ν1 ν2 ν3

d(own) s(trange) b(ottom) e µ τ
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Three generations
Use “bi-unitary diagonalization” (singular value decomposition) for
general matrices:

yf = V fL λf V
f†
R , where λf = diag(λf,i, . . . ) ∈ R .

This allows us to diagonalize the mass (and Higgs coupling) terms by
a basis change of the fermion fields in flavor space.

u′L = V u†L uL , d′L = V d†L dL , L′ = V e†L L ,

u′R = V u†R uR , d′R = V d†R dR , e′R = V e†R eR .

This diagonalizes the mass and Higgs-coupling terms, but:

g√
2
W+
µ (uL γ

µ dL) + h.c. =
g√
2
W+
µ

(
u′L
[
V u†L V dL

]
γµ d′L

)
+ h.c. .

Note: The Higgs and Z couplings are flavor diagonal.
⇒ There are no “Flavor changing neutral currents” (FCNC’s) in the

Standard Model (at tree level!).
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Three generations
The flavor changing transitions between different generations of
left-chiral fermions at the W -vertex

g√
2
W+
µ

(
uL

[
V u†L V dL

]
γµ dL

)
+ h.c. .

We define the unitary Cabbibo-Kobayashi-Maskawa matrix

VCKM := V u†L V dL .

VCKM can be parametrized by 4 parameters (exercises).

“Standard”: 3 angles+1 complex phase; Wolfenstein: 4 O(1) parameters λ, A, ρ, η.

VCKM ≡
(
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtd

)
=

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4)

Having physical complex phases requires at least three generations
and implies the explicit violation of CP (matter anti-matter
asymmetry).

Nobel prize Kobayashi and Maskawa 2008
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CP Violation in the SM
ψL
(L,−)

ψR
(R,−)

ψ†
L

(R,+)

ψ†
R

(L,+)

CP CP

C C

P

P

Experimentally, CP violation is well established in K, B and D mesons.

Nobel prize Cronin and Fitch 1980

For example:
BR(B+ → D0K+) 6=
BR(B− → D

0
K−) .

. . . and many more

Quark flavor physics is precision science now!
Ongoing: Search for CP violation in lepton sector.

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 40/ 52



FCNC’s in the SM
In the SM there are no Flavor Changing Neutral Currents (FCNC’s) at
tree level.
However, via loops neutral flavor change
d→ d− type or u→ u− type can happen.
For example: Klong = |ds〉 → `+`− (and many others).

Hence, such processes are
naturally very suppressed
and therefore offer crucial
tests of the SM.

Most recently:

John Ellis picture credit Claudia Marcelloni, CERN
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CP Violation in the strong interactions?
SU(3)c gauge interactions allow for the presence of a so-called θ-term

Lθ = θ
g2

32π2
Gaµν G̃

µν,a .

This term is P and T odd, hence, also CP violating.
The corresponding CP-odd basis invariant is

θ := θ + arg det yu yd .

Thus, next to the Jarlskog invariant as source of CP violation from weak interactions
(CKM), also strong interactions can violate CP. Unlike CP violation from weak
interactions, which practically always comes with flavor violation, this type of CP
violation has nothing to do with flavor changes.

Strong CP violation induces an electric dipole moment of the neutron

dn ≈
(
1.5× 10−16 e · cm

)
θ .

The non-observation of dn implies θ . 10−10.
We don’t understand why θ should be so small and this is called the

strong CP problem.
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Total parameter count of the SM

“Classical” SM without neutrinos: 19

• Gauge sector: g, g′, g3 ,
• Higgs sector: v, λ ,
• Flavor sector:

• Masses: yu, yc, yt; yd, ys, yb; ye, yµ, yτ ,
• Mixings: θq12, θq13, θq23, (in Wolfenstein parametrization λ, A, ρ)
• Phases: δCKM, (in Wolfenstein parametrization η)
• Exotic: θQCD.

Including neutrinos with Dirac (Majorana) mass terms: +7(9)

• Neutrino flavor sector:
• Masses: m1, m2, m3;
• Mixings: θ`12, θ`13, θ`23,
• Phases: δPMNS, (+φ1,φ2 for Majorana neutrinos)
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Global (accidental?) symmetries of the SM
There are also global symmetries in the SM that (unlike gauge
‘symmetries’) relate physically distinguishable states.

These global symmetries are “accidential”. Either because they arise
in the slipstream of gauge symmetries, or because parameters are
“such and such”.

• Custodial symmetry: SO(4)
〈H〉−−→ SO(3)⇒ ρ = 1 (at tree level).

Broken by g′.
• Nuclear isospin SU(2): n↔ p, because mu ≈ md.
• Chiral symmetry of QCD SU(3)L × SU(3)R (explicitly(2x) and

spontaneously broken)→ QCD lecture.
Nobel prize Gell-Mann 1969

• Lepton family numbers U(1)e, U(1)µ, U(1)τ . Broken by neutrino
masses mν ⇒ CLF (e.g.µ→ eγ) heavily suppressed.

• Baryon(B)- and Lepton(L)-number symmetries U(1)B&U(1)L.
Broken by chiral anomaly with SU(2)L.

U(1)B−L is conserved in presence of 3 right-handed neutrinos.
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The experimental success of the SM
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The experimental success of the SM

SM is highly predictive and
shockingly successfull.
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Really, no deviations?

There will always be statistical fluctuations→deviations. . .
. . . significance is important!

For example: Long-standing (3− 4)σ deviation in muon anomalous

magnetic moment aµ ≡
1

2
(gµ − 2). δa`

a`
∼ m2

`

M2
NP

This is an indirect test of the whole SM (and NP).

Discrepancy between SM theory prediction and measurement:

∆aµ = aexp
µ − aSM

µ = 251(59)× 10−11 .

Other increasinly significant deviations: Tests of “Lepton Flavor Universality” (LFU)
(at LHCb/Belle(II)/Babar) B → Kµµ/B → Kee, B → Dτν/B → D`ν, . . .
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Ongoing tests of Higgs properties
Recall: Higgs couplings to
fermions

ghff =
mf

v
∝ mf .

Higgs self-interactions, in-
duced by SSB

V (h) =
m2
h

2
h2+

λ

2
vh3+

λ

8
h4+const.

v =
µ

λ
, mh = 2λv2 .

The cubic and quartic self-
couplings of the Higgs boson
are predicted in the SM.

κ3 := λ3h/λ
SM
3h
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RG Evolution to high scales
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(Near?) Criticality of the SM
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Puzzles and problems of the
Standard Model

• Neutrino masses. mν = 0 in the SM.⇒ SM must be extended!

Nobel prize Kajita and McDonald 2015
(“for discovery of neutrino oscillations, which shows that neutrinos have mass”)

Empirically
∑

mν . 0.1 eV. Easily remedied, e.g. Dirac/Majorana mass for ν:

Lmν = yν L H̃ νR , or Lmν =
1

Λ
(LH)T (LH) .

Exact mechanism for mν still unclear. −→ see neutrino lectures
• Strong CP problem (“Why no CP violation in strong interactions?”).
• Flavor puzzle (“Why hierachical masses and mixings? Why three generations?”).
• Charge quantization (“Why is Hydrogen neutral?”).
• Vacuum stability? U(1) Landau pole at high scale?

• Electroweak hierarchy problem (“why mh �MPl”).
• Baryon asymmetry of the Universe?
• What is Dark Matter?
• Computation of vacuum energies? (what is Dark Energy?)
• Unification with gravity?
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Beyond the Standard Model

• Grand Unified Theories (GUTS)

SO(10) / SU(5) ⊃ SU(3)× SU(2)×U(1) .

16 = 10⊕5⊕1 = (3,2)1/6⊕(3,1)−2/3⊕(1,1)1⊕(3,1)1/3⊕(1,2)−1/2⊕(1,1)0

• Would explain charge quantization and unification of gauge
couplings!

• Predicts proton decay (not observed. . . ).
• Unification of Higgs representations? ’Doublet-triplet

splitting’.

• Supersymmetry Bosons↔ Fermions.

• . . . . . . . . .
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Thank You!
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Backup slides
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