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Selection of recommended books

Peskin & Schréder — Quantum Field Theory

Srednicki — Quantum Field Theory

Sheng & Li — Gauge theory of elementary particle physics
Schwartz — Quantum Field Theory and the Standard Model
Weinberg — The Quantum Theory of Fields

Griffith — Introduction to Elementary Particles

Halzen & Martin — Quarks and Leptons

Feel free to ask me for other resources if you are in need.
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[I. A model of leptons

— Non-Abelian gauge theories
— Electro-weak unification

[ll. The three generation Standard Model

— Flavor structure and CP violation
— Puzzles and problems of the Standard Model
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Introduction
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Four fundamental forces

Gravitational
apples,
stellar systems,
galaxies,
the Universe,
black holes

Strong
nuclei,
baryons&mesons
a-decays,
confinement

Andreas Trautner

mmmm Gravitational s

Graviton: ©?

Solar system
Galaxies o
Black holes

m—— Strong m——

mm Electromagnetic mm

Photon:

Atoms

Light .
Chemistry
Electronics

2

Weak

Neutron decay
Beta radioactivity
Neutrino interactions

.

Gluon:
“ee
i
Quarks )
*®
Mesons At
Baryons Nuclei

Burning of the sun

Introduction to the Standard Model,

Electromagnetic

atoms, crystals,
tables, walls,
radio, x-ray,

sound, v-decays

Weak
(B-decays,
parity violation,
CP violation,
neutrino
interactions,
solar energy

Major achievement of the
Standard Model (SM):
Electro-weak unification

12-14.07.21

5/ 52



Andreas Trautner

Fundamental matter

Standard Model of Elementary Particles

interactions / force carriers

three generations of matter
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Fundamental concepts
The SM is a relativistic quantum field theory (QFT).

), H

unitarity
ot = (I, %),
SO(1,3)
causality

Fme (vears)
E,B, L
locality = =
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Fundamental concepts
The SM is a relativistic quantum field theory (QFT).

), H

unitarity
ot = (I, %),
SO(1,3)
causality

Inme (vears)
E,B, L
locality ==

Noether (1918):
Continuous symmetries < conservation laws.

9 Absolute key in the formulation: Symmetries!
3

U
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Symmetries and conservation laws

Symmetry / invariance conservation law

time translation invariance <« conservation of energy

spatial translations “ conservation of momentum

rotational invariance < angular momentum conservation
<~

gauge invariance conservation of “charge”
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Symmetries and conservation laws

Symmetry / invariance conservation law

time translation invariance <« conservation of energy
spatial translations “ conservation of momentum
<

rotational invariance angular momentum conservation

gauge invariance > conservation of “charge”

Note: The laws are invariant, this does not mean that every
meaningful “object” is invariant!

“Objects” are representations of symmetries.
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Symmetries and conservation laws

Symmetry / invariance conservation law

time translation invariance <« conservation of energy
spatial translations “ conservation of momentum
<

rotational invariance angular momentum conservation

gauge invariance > conservation of “charge”

Note: The laws are invariant, this does not mean that every
meaningful “object” is invariant!

“Objects” are representations of symmetries.

Examples: 3-vector is 3-dim. representation of SO(3).
spin-1/2 “spinor” is 2-dim. representation of SU(2).
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Symmetries and conservation laws

Symmetry / invariance conservation law

time translation invariance <« conservation of energy
spatial translations “ conservation of momentum
<

rotational invariance angular momentum conservation

gauge invariance > conservation of “charge”

Note: The laws are invariant, this does not mean that every
meaningful “object” is invariant!

“Objects” are representations of symmetries.

Examples: 3-vector is 3-dim. representation of SO(3).
spin-1/2 “spinor” is 2-dim. representation of SU(2).

SM gauge symmetry is SU(3)color @ SU(2)1eft @ U(1)hypercharge

Objects: elementary quantum fields (particles); charged under these

symmetries.
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Poincaré / Lorentz group representations
Invariance under full Poincaré group of 3 + 1-dim. space-time

¢ translations (space and time)

e rotations (space) i g SO
® boosts Nt = +diag (+, — — —)
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Poincaré / Lorentz group representations
Invariance under full Poincaré group of 3 + 1-dim. space-time

¢ translations (space and time)

* rotations (space) i g SO
® boosts Nt = +diag (+, — — —)

Representations of the Lorentz / Poincaré group are classified by
their mass and spin. (Wigner, '39) (JC clasification of states.)
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Poincaré / Lorentz group representations
Invariance under full Poincaré group of 3 + 1-dim. space-time

¢ translations (space and time)

* rotations (space) | S i SO, 3
® boosts Nt = +diag (+, — — —)

Representations of the Lorentz / Poincaré group are classified by
their mass and spin. (Wigner, '39) (JC clasification of states.)

Skipping (a lot of interesting) technicalities, the representations of the
Lorentz group can be classified as representations of

sl(1,3) = 51(2,C) = su(2) @ su(2)

(this makes life very easy, because this behaves spimply like the well known “spin” x “spin”)
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Poincaré / Lorentz group representations
Invariance under full Poincaré group of 3 + 1-dim. space-time

¢ translations (space and time)

* rotations (space) Lorentz group SO(1, 3)
® boosts " = +diag (+, —, —, —)
Representations of the Lorentz / Poincaré group are classified by
their mass and spin. (Wigner, '39) (JC clasification of states.)
Skipping (a lot of interesting) technicalities, the representations of the
Lorentz group can be classified as representations of
sl(1,3) = 51(2,C) = su(2) @ su(2)

(this makes life very easy, because this behaves spimply like the well known “spin” x “spin”)

Label of representation common name typical symbol
(0,0) scalar” (invariant) 1)

(1/2,0) “left-handed Weyl spinor” 4,

(0,1/2) “right-handed Weyl spinor” ¢

(1/2,1/2) “vector” A,

(1/2,0)® (0,1/2) “Dirac spinor” (composite!) ¥
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Important things to note
We work in natural units, i.e. set

h=c=1.

Thus, dimensions work out as
1 1
[E] =[p] = [m] = == = == = GeV .
(L] [t
To restore units use dimensional analysis and
[ ¢~ 200MeV fm . |

(This is a relation worth memorizing).
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Important things to note
We work in natural units, i.e. set

h=c=1.
Thus, dimensions work out as
1 1
[E] =[p] = [m] = == = == = GeV .
(L] [t
To restore units use dimensional analysis and
[ ¢~ 200MeV fm . |

(This is a relation worth memorizing).

Disclaimer for the whole lecture
Given the scope of this lecture we will to a large extent skip the subjects of:
® gauge-fixing / ghosts ,
® renormalization ,
® quantum (loop) corrections , ...and many more details. . .

So be aware that our discussion will be largely superficial, noting that an accurate
formulation of quantum field theory, renormalization, the treatment of spontaneously
broken gauge symmetries, efc. requires much more care.
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Dirac Theory / Quantum
Electrodynamics (QED)
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Quantum Electrodynamics (QED)

QED is the protoype of a quantum field theory (QFT).
For any (Q)FT (schematically):

Partition function Z = / Do e®  with §= / d*x L(¢,0,0) .

Stationary action S < equations of motion

oL oL
On <a<au¢>> ~ 36

(Euler-Lagrange equations)
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Quantum Electrodynamics (QED)

Consider Dirac fermion ¥(z) charged under global symmetry.
Transformation under global U(1) ransformation:
U(z) — e 99(z) .
Symmetry and Lorentz invariant Lagrangian (m € R w.l.o.g.):
L=iUy"9,¥ —m IV .
Gamma matrices C**4, with {7, 4"} = 2p*1.

In “chiral” / “Wey!” basis:

. <0 a“) with  o# = (1,0%), o = (1, —0") ,

7= . . -
g4 0 and Pauli matrices o*=1%3.

initi W — Wl A0 0.1.2.3_ (-1 0
Definitions: W := U1 A0 ~% :=iy0q1~2y ( 1).
Conserved U(1) = conserved charge ¢, with conserved current

jH(x) = TyPT,  with 95" =0.

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 13/ 52



Quantum Electrodynamics (QED)

QED is the theory of a Dirac fermion ¥(z) charged under local U(1).

Transformation under local U(1) gauge transformation:
U(z) = e®@W(z)  and  Au(z)— Au(z) + éﬁﬂa(x) .
The corresponding gauge and Lorentz invariant Lagrangian:
Lqep = i@’y”DH\IJ —mU¥ — %FWF‘“’ .
Here:

D, =0, —ieA,(x) and F,, :=0,A, —0,A,.
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Quantum Electrodynamics (QED)
Euler-Lagrange equation of motion for A4,
O F" =ej”, and 9, FM = %8M8“Vpong =0.
(Maxwell’s equations!)
Euler-Lagrange equation of motion for W:

U (iy"9, — m) ¥ = —e A, Uy" ¥ .
(Dirac equation)
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Quantum Electrodynamics (QED)

Euler-Lagrange equation of motion for A4,
~ 1
OuF"™ =ej”, and O, F"™ = 0,7 Fyy = 0.
(Maxwell’s equations!)

Euler-Lagrange equation of motion for W:

WA
U (iy"9, — m) ¥ = —e A, Uy" ¥ . "
(Dirac equation) Z
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Quantum Electrodynamics (QED)

Euler-Lagrange equation of motion for A4,
~ 1
OuF"™ =ej”, and O, F"™ = 0,7 Fyy = 0.
(Maxwell’s equations!)

Euler-Lagrange equation of motion for W:

WA
U (iy"9, — m) ¥ = —e A, Uy" ¥ . "
(Dirac equation) Z
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Quantum Electrodynamics (QED)

Euler-Lagrange equation of motion for A4,

~ 1
OuF" =ej”, and O P = S8, Fyy = 0.
(Maxwell’s equations!)

Euler-Lagrange equation of motion for W:

WA
U (iy"9, — m) ¥ = —e A, Uy" ¥ . "
(Dirac equation) Z

_ unz(tf)) o

—ie¥ <v“F1(q2) o
. = Fa(q® =
a 2(¢” — 0) oy +

= e = e =
Ws :ge%B = (ae + 1)EB
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Quantum Electrodynamics (QED)

Euler-Lagrange equation of motion for A4,

~ 1
OuF™ =ej”, and O F" = S0, Fyy = 0.
(Maxwell’s equations!)
Euler-Lagrange equation of motion for W: e A
@(i’y“(‘)u —m) V¥ = —eA#T'y“\I/ . "

(Dirac equation)

i (145 - T2 )

ae:Fg(q2—>0):%+...
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Quantum Electrodynamics (QED)

Euler-Lagrange equation of motion for A4,

~ 1
QuF™ =cj’ . and 9 F" = 0, Fy =0,
(Maxwell’s equations!)
Euler-Lagrange equation of motion for W: e A
@(i’y“(‘)u —m) V¥ = —eA#T'y“\I/ . "

(Dirac equation)

_ unz(tf)) @

—ie¥ <7”Fl(q2) T

@
2m
= e = (& =3
Ws = ge%B = (ae + 1)EB

ae:Fg(q2—>0): + ...

afh =1.159652182032(13)(12)(720) x 1073
a®P = 1.15965218091(26) x 1073
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Quantum Electrodynamics (QED)

Recall: Dirac fermion is composite (1/2,0) & (0,1/2)!

Let's expose this more clearly: ¥(z) := (wL(w))
Yr(z)
~ can rewrite Dirac equation as two coupled equations:
1/};% 100, YR = de}L#/JL )
W} 50, YL = myLyr .

Andreas Trautner Introduction to the Standard Model, 12-14.07.21 16/ 52



Quantum Electrodynamics (QED)

Recall: Dirac fermion is composite (1/2,0) & (0,1/2)!
Let's expose this more clearly: ¥(z) := (m@))_
Yr()
~ can rewrite Dirac equation as two coupled equations:
Yhiotd, vr = myhyr
Y} "0, Y = mylvr -
The independent equations for 1, r are coupled only by the

Dirac-mass term

U — X
———  mU¥ = myhvr + mylvg .
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Quantum Electrodynamics (QED)

Recall: Dirac fermion is composite (1/2,0) & (0,1/2)!

Let’s expose this more clearly: ¥(z) := <wL(w)>.
Yr()
~ can rewrite Dirac equation as two coupled equations:
Yhiotd, vr = myhyr
Y} ie#0, v = mylvr .
The independent equations for 1, r are coupled only by the
Dirac-mass term

U — X
- mUY = myhr +mplvr .
: . e
Including the vector-like electron-photon vertex >ﬁ*
—eAuﬁv”\Il = =ced, (1/)};0“1/)3 -+ 1/)26”1/@) . ‘

Note: U(1) acts vector-like(=same on left and right) on the fermions

Yr,r(2) = DY () .
= QED automatically conserves parity transformation “i;, <+ 9 g”.
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Quantum Electrodynamics (QED)

j; Nobel prize Feynman, Schwinger, Tomonaga 1965 :}

Important general lessons
e Conservation of the (electric) current tied to global symmetry.
Gauge principle:

¢ Gauge invariance dictates interactions and (partially) the
degrees of freedom.

e Gauge invariance strictly prohibits mass for A4, (photon).
e Observables are gauge invariant.

e Gauge “symmetry” should be viewed as a redundancy: States
related by gauge transformations are physically
indistinguishable.

¢ (not shown): Gauge invariance holds up in the quantum theory
(“anomaly freedom”).
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Spontaneous symmetry breaking

(in “scalar QED” or “Abelian Higgs model”)
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Spontaneous symmetry breaking (SSB)
“SSB”: System (Lagrangian) has a symmetry, but present state
(typically ground state, or vacuum) is not symmetric.

A very common phenomenon in nature.

SSB for gauge theories is the worst name ever invented because
symmetry is actually not broken but just non-linearly realized.
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Example: Scalar QED

Consider complex scalar field charged under U(1) gauge
Ba) > @(z)  and  Au(e) o Au(@) + 0ua(z)

Invariant Lagrangian density:

1
4

EsQED = (Du¢)* (D#d)) - V(¢) F;WFW/ 0

with potential (42 > 0,1 > 0)
2 2 A 4
V(9) = 7ol + 5ol
Equations of motion have classical solution,

(0|¢(x)|0) = const. =: v,
“vacuum expectation value” (VEV)

that minimizes the potential energy.
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Example: Scalar QED
Thus, it makes sense to expand theory around (¢(z)) = v:
$(@) = €@/ (vt o(a)) .
Expanding the Lagrangian, there are terms

Lagup D+ + G ALA +ie 8 (0u0) — 6 (3,07 A+ ...
St EVPA AR 4 N

This is indicative of the fact that SSB generates a mass term for the
gauge boson
ma = \/iev .

We can pick a gauge to eliminate £(x) from the theory. In this gauge
(called “unitary gauge”) the “wanna-be Goldstone” mode £(z)
becomes the longitudinal mode of the, then massive, gauge boson.

This is at the heart of the Brout-Englert-Higgs mechnanism.
You will show this in the exercises.
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Spontaneous symmetry breaking (SSB)

¢ For continuous global symmetries:

Each spontaneously broken symmetry generator implies
massless scalar degree of freedom (Nambu-Goldstone boson).

& Nobel prize Nambu 2008 2

¢ For gauge theories:

SSB can happen but the Goldstone bosons are unphysical
degrees of freedom.

Via the so-called Brout-Englert-Higgs mechanism the
“wanna-be” Goldstone bosons provide a consistent way to
generate masses for gauge boson without spoiling gauge
invariance.

& Nobel prize Englert and Higgs 2013 2
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Non-Abelian gauge theories
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Non-Abelian symmetry groups
U(1) is a group “generated” by charge ¢, U € U(1) with U = ¢'%*,

Instead of exponentiating numbers, we can exponentiate matrices!
generators = matrices .
Example: SU(n). “Unitary”: UTU = 1. “Special”: det U = 1.
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Non-Abelian symmetry groups
U(1) is a group “generated” by charge ¢, U € U(1) with U = ¢'%*,

Instead of exponentiating numbers, we can exponentiate matrices!
generators = matrices .

Example: SU(n). “Unitary”: UTU = 1. “Special”: det U = 1.
All matrices in SU(n) can be written as

U = T (a=1,...,n% —1).

The fixed matrices [T“];; are called generators and they can be
chosen traceless and hermitean. (e dimensions of i; decide dimension of representation )
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Non-Abelian symmetry groups
U(1) is a group “generated” by charge ¢, U € U(1) with U = ¢'9*.
Instead of exponentiating numbers, we can exponentiate matrices!
generators = matrices .
Example: SU(n). “Unitary”: UTU = 1. “Special”: det U = 1.
All matrices in SU(n) can be written as
U = T (a=1,...,n% —1).
The fixed matrices [T“];; are called generators and they can be
chosen traceless and hermitean. (e dimensions of i; decide dimension of representation )

For n = 2, well known SU(2) with a = 1, 2, 3 and the generators T*
being the Pauli matrices:

o0 e 10 ) e 1(1 0)
2\1 o 2\i o 2\0 -1
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Non-Abelian symmetry groups
U(1) is a group “generated” by charge ¢, U € U(1) with U = ¢'9*.
Instead of exponentiating numbers, we can exponentiate matrices!
generators = matrices .
Example: SU(n). “Unitary”: UTU = 1. “Special”: det U = 1.
All matrices in SU(n) can be written as
U = T (a=1,...,n% —1).

The fixed matrices [T“];; are called generators and they can be
chosen traceless and hermitean. (e dimensions of i; decide dimension of representation )
For n = 2, well known SU(2) with a = 1, 2, 3 and the generators T*
being the Pauli matrices:

101 1 (0 - s 1(1 0\
2\1 0/’ 2\i o)’ 2\0 -1
In general, the generators do not commute=non-Abelian:
I:Ta, Tb] — ifabc TC .

f2% are called the structure constants. For SU(2): f%¢ = geb¢
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Non-Abelian gauge theories — Yang-Mills theories
Exactly as in the case of U(1), we can also demand invariance under

local SU(n): o
U(z) = Uz)¥(z) = T @0(z) .

The gauge covariant derivative then is given by
[Dul;; := 1ij0p — igAp(x)*Tj.
The field strength tensor then is given by
ig Fl =ig F}}\, T* == [Dy,, D,] ,
and spelled out
Fy, = [0,A% — 0,A% — g f AL AC] .

The gauge-kinetic term is

1
EYM = — ZF:‘DF'MD’G °
= Non-Abelian gauge theories have self-interacting gauge bosons.
5 ) Nobel E,riz,e 't Hooft and Veltman 1999 }
- (for renormalization of spontaneously broken NA gauge theories) ~
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A model of leptons:
Electroweak unification
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A model of Leptons
Consider now a theory of fermions, gauge bosons and scalars with
gauge symmetry

SU2)L, x U(1)y “left” x “hypercharge” .

Fields: L er H
Lorentz  (1/2,0) (0,1/2) (0,0)

vy, ¢+ r [SU(2)1] 2 1 2
L= , er, H = o) av [UQ)y]  —1/2 -1 1/2
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A model of Leptons
Consider now a theory of fermions, gauge bosons and scalars with
gauge symmetry

SU2)L, x U(1)y “left” x “hypercharge” .

Fields: L er H
Lorentz  (1/2,0) (0,1/2) (0,0)

vy, ¢+ r [SU(2)1] 2 1 2
L= , er, H = : av [UQ)y]  —1/2 -1 1/2

er ¢’

Note: All fermions we introduce are chiral Weyl spinors, but we use a trick to write them
in terms of Dirac fermions

— L sgo (Y 0) (¥ _ (¥
et 6)-()

Crucial: chiral charge assignment for fermions
< P violation in SM is “explicit and maximal’, (not spontaneous!)

Note: chiral charge assigments = no possible fermion mass terms

1/1;%1% : WL?ﬁR , Ypdr, YrYR.
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A model of Leptons
Electroweak Lagrangian:

LEw = Lyinetic T Lgauge + LHiggs + Lyukawa -
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A model of Leptons
Electroweak Lagrangian:

o

+..Fb++\,\ ¢

LEw = Lxinetic + ﬁgauge + EHiggs = O, +\E;Y§CE:;;(

with

ﬁkinetic = ifquDuL + iERquDueR + (DMH)T(DMH) )

1 1
Loauge = — 7 B BM _ 1 Wﬁu WwHve
A 2
£Higgs = UQ HTH - 5 (HTH> 5 (Mz >0, > O)
Lyukawa = — yeZHeR +hec., (ye €R, wlog)
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A model of Leptons
Electroweak Lagrangian:

S EF

+..Fb++\,\ ¢

LEw = Lxinetic + ﬁgauge + EHiggs = O, 1’;;“{7@{;‘

with

£kinetic = ifquDuL + iERquDueR + (DMH)T(DHH) )

1 1
Loauge = — 7 B BM _ 1 Wﬁu WwHve
A 2
£Higgs = UQ HTH - 5 (HTH> 5 (Mz >0, > O)
Lyukawa = — yeZHeR +hec., (ye €R, wlog)

Gauge covariant derivatives (depends on charges of resp. field)
D, = (8, —ig'qyBu) 1 —igT*Wy .

Potential is set up for spontaneous symmetry breaking.
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A model of Leptons

g (27 _ L (e2tivs) _ 1 ipegen (0
¢’ V2 \go +iep V2 h(x)

2
7 A 2

V(H) = =5 (e6+ 91+ e5+¢3) + 2 (95 + 0t + 95+ ¢8)

Note: Higgs potential is accidentially SU(2) x SU(2) = SO(4) symmetric (custodial

symmetry).
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A model of Leptons

g (97 _ L (eties) _ 1 iree( O
¢° V2 \po +ip V2 h(z)

2
7 A 2

V(H) = =5 (e6+ 91+ e5+¢3) + 2 (95 + 0t + 95+ ¢8)

Note: Higgs potential is accidentially SU(2) x SU(2) = SO(4) symmetric (custodial

symmetry).
Any VEV (H) with strength |(H)| = v/v/2 = u/V'A # 0 breaks
(H)
SU(Q)L X U(l)Y — U(l)em ;

™ + Y = Q.
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A model of Leptons

g (97 _ L (eties) _ 1 iree( O
¢° V2 \po +ip V2 h(z)

2
7 A 2
V(H) = =5 (e6+ 91+ e5+¢3) + 2 (95 + 0t + 95+ ¢8)
Note: Higgs potential is accidentially SU(2) x SU(2) = SO(4) symmetric (custodial
symmetry).

Any VEV (H) with strength |(H)| = v/v/2 = u/V'A # 0 breaks
(H)
SU(Q)L X U(l)Y — U(l)em )
™ + Y = Q.

We can use SU(2) gauge rotation to absorb the Goldstone bosons
£=12:3 (1) (“unitary gauge”) to make H look like

1 0
H@ =75 (v 4 h@)) '
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A model of Leptons
Taking into account the VEV, mass eigenstates arise as

Z w3
WE = 1 (Wr+iw?) , sy [ W W w
\/i Au —Sw Cw B/t

where
/

sw = sin(Ow) = S — , cw =cos(fw) = S —
/92 +gl2 92 +g/2
The VEV induces physical gauge boson masses
gv gv
PR

B 2 Cw
Other often used relations

my+ = , ma=0.

gq 9>  Gp
e = =

/2 +g2 8mk 2

£ Nobel price Glashow, Salam, Weinberg 1979 2

{; Nobel price Rubbia and van der Meer 1984 ;7,
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A model of Leptons
After SSB the Lagrangian contains gauge boson couplings

A, xeQ (exy"er +ery'er) = eA,jh.,

with Q:=ev(T?) +Y .

_ _ g .
Zy X I (g1 Bry"er, + gr ErYer) = —Z,j4%. ,
cw cw
with g1 :==ev(T?) = Qsiy,  gr=Qspy,

g g
Wt x = (7v*e) + h.c. = 2L
( LY L) \/§

Wik +he. .
w R p Jec.
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A model of Leptons

After SSB the Lagrangian contains gauge boson couplings
= eA,jh.,

A, xeQ (exy"er +ery'er)

with Q :=ev(T?*) 4+ Y.
9 oM S pyh = 9 10
Z, x — (g eLy*er + gr erY"'eR) - ZyJnc.
9gRr ‘= QSIZ/V )

with g7 == ev(T?) — Q% ,
Wik, +he..

_ 9

V2

I
AW' ,Tzo
! 2
/\ /\ T2
2

g
W x == (py*er) +h.c.
Iz \/5
Historically important: for ¢? < m‘%‘,’Z
4, e @D .
SRNGA NS 2 Me.c. X jhc. i
p = - -
\/ \/ Mn.c. X ](’:L.C.]Z'C‘
2
g 1
2Ty mied
= S =
Loy W
zZ

12-14.07.21

This is a consequence of custodial symmetry, i.e. the specific breaking of EWSB by H = 2 /5.
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A model of Leptons

Fermion (Dirac) masses after SSB.

_*CYukawa = yefHeR +h.c. =

unitary gauge  Ye (7 _ ) 0 _
— = s L (7 e eR + h.c. =
V2 L=k (v + h) e

X

Sy eTLeR + % heTLeR +he /ST

V2 V2 /

The VEV induces a Dirac mass for the charged lepton, and
Higgs boson couplings proportional to mass/VEV

Yev Yo _ e

\/5 ’ Ghete— — \/§ - v

Mme —
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Adding quarks
Quarks as chiral fermions, in fundamental representation 3 of SU(3),
the gauge group of Quantum Chromodynamics (QCD).
Full gauge symmetry:

SU(3)C(olor) X SU(Q)L X U(I)Y

Quark fields: Q ug dr
Lorentz  (1/2,0) (0,1/2) (0,1/2)

0, = [“ p rSUE). 3 3 3

L= dy y, UR, QR - r [SU2)L] 2 1 1
av [U()y]  1/6 2/3 -1/3

- =]
—Lyvuk. = YuQp Hug +yaQp Hdy +hec
} 3 (W.l.0.9. yu,ya € R)
H :=ic2H* (H transforms as 2* = 2 of SU(2)1, but has opposite hypercharge —1/2).
SU(3) is unbroken, but becomes strongly coupled at low energies to
confine quarks into baryons and mesons — QCD lecture.

& Nobel prize Gross, Politzer, W|Iczek 2004 2

(for discovery of asymptotlc freedom in QC
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Parity violation in Nature
Weak interaction violates parity (by construction).

1
W;r X % (PLPL'y“eL) + h.c. P, = 5(]]. = ’)/5)

This describes experimental fact of “(V — A)” weak interactions.
Lo = ?/g (@* (1 —~°)d) x (77u(1 —~°)e)
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Parity violation in Nature
Weak interaction violates parity (by construction).

1
W;r X % (PLPL'y“eL) + h.c. P, = 5(]]. = ’)/5)

This describes experimental fact of “(V — A)” weak interactions.
Lo = ?/g (@* (1 —~°)d) x (77u(1 —~°)e)

For example: 1) 7t (= |ud)) — e + v, u e
+
€ \Y N
P 1!
— i)—> - > —<{ ;y w
D+ ‘\TE__" Py
o=l G.=0 oy =1/ 9 v.
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Parity violation in Nature
Weak interaction violates parity (by construction).

1
W;r X % (PLPL'y“eL) + h.c. P, = 5(]]. = ’)/5)

This describes experimental fact of “(V — A)” weak interactions.
Lo = ?/g (@* (1 —~°)d) x (77u(1 —~°)e)

For example: 1) 71 (= |ud)) — e + v, u e
+
€ \Y% A
—( i)—> - T — =<{ ;y W
pe* ‘\TE__" P
o=l 0,=0 oy =1/ 9 v.
e
2) Famous '56
Wu experiment | <t | —
89Co — SINi* + e~ + e e
This world “Mirror” world
& Nobel prize Lee and Yang 1957 2)
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Anomaly freedom of the SM

A symmetry of the classical action S is not necessarily a symmetry of the full
quantum theory. Quantum corrections may not obey the symmetry.

z Sym. /D\I/D@ ol JA ST

“Anomaly coefficient” A

Ax Y w (T“ {Tb,Tc}) . . c
chiral fermions
® For gauge symmetries: Anomalies must cancel for consistency.
® For global symmetries: a very different issue. Anomalies are important
for phenomenology, e.g. 7° — 7.

® Anomalies are always associated with chiral Fermions. Anomaly
freedom automatic for symmetries that act vector-like (e.g. QED, QCD).

e SM: Anomalies cancel within each generation. (exercises)
(SU(3) x...), (SU2) x ...),SU(3)3, SU(2)3, U(1) x SU(2)2, U(1) x SU(3)%, U(1)3.

This unveils a very delicate balance of charges in the SM whose origin we do
not understand.
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The three generation Standard Model
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Three generations
Empirically it is a fact that matter fermions come in three copies which
are identical representations under all symmetries.

E “Who ordered that?” (1. Rabi 1936)

Modelling: simply (Qr,ugr,dr, L,er); withi =1,2,3 .
Three “generations” or “families” of different “flavors”.
— Lok = QHyIul, + QHy I dl, + T'Hy e, + hec.
Yu, Yd, Ye € ®3><3-

Many new parameters and possibility of physical complex couplings!

Naming scheme of the mass eigenstates:

Quarks Leptons
u(p) c(harm) t(op) v, Uz Us
d(own) s(trange) b(ottom) e n T
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Three generations
Use “bi-unitary diagonalization” (singular value decomposition) for
general matrices:

yr = Vi VT, where )\ = diag(\si,...) €R.

This allows us to diagonalize the mass (and Higgs coupling) terms by
a basis change of the fermion fields in flavor space.

up = Vi, dp, = V4, L' =VSL,

uy = Vitug, dyp = Vildg, e = Viler.

This diagonalizes the mass and Higgs-coupling terms, but:

9 vt o oan — 9wt (+ utyd| u g
Wit @y dr) +he. = oW (uL [VL VL}W dL> +he..
Note: The Higgs and Z couplings are flavor diagonal.

= There are no “Flavor changing neutral currents” (FCNC’s) in the
Standard Model (at tree levell).
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Three generations
The flavor changing transitions between different generations of
left-chiral fermions at the W -vertex

7W+ (e ViV v dn) + e
Vokm = VHVE.

Veku €an be parametrized by 4 parameters (exercises).

Vaa Vas Vb 1—2%/2 A AX3(p — in)
Vokm = [ Ved Ves Ve | = ) 1—2%/2 AN? +O(\Y)

Via Vis Via AN (1 —p—in) —AN? 1

Having physical complex phases requires at least three generations
and implies the explicit violation of CP (matter anti-matter
asymmetry).

& Nobel prize Kobayashi and Maskawa 2008 @
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CP Violation in the SM
©) 5 P b
5 I _

negative charge positive charge T C C T

SHed cr cr

lefthanded right handed i i

@@) vl P k

electron positron (R,+) (L,+)

T
Amg& A
Y am, M.

For example:
BR(BT — D°K™) #
BR(B- - D'K7).
...and many more

5
y
Q
P /e I I AT R e

00 02 04 06 08

B

Quark flavor physics is precision science now!

Ongoing: Search for CP violation in IePton sector.
12-14.07.21
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FCNC'’s in the SM
In the SM there are no Flavor Changing Neutral Currents (FCNC’s) at
tree level.

However, via loops neutral flavor change
d — d — type or u — u — type can happen.

For example: Kiong = |ds) — ¢7¢~ (and many others).

d+w+€ -

ATLAS 2018 7

Hence, such processes are
naturally very suppressed
and therefore offer crucial
tests of the SM.

Most recently:

0 1 2 3 1 5
BR(Bs — ) x10-°

John Ellis picture credit Claudia Marcelloni, CERN
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CP Violation in the strong interactions?
SU(3). gauge interactions allow for the presence of a so-called 6-term
2

g ~
— 0 a wa
Ly = 05,5G, G

This term is P and T odd, hence, also CP violating.
The corresponding CP-odd basis invariant is

0 = 0 + argdety,yq -

Thus, next to the Jarlskog invariant as source of CP violation from weak interactions
(CKM), also strong interactions can violate CP. Unlike CP violation from weak
interactions, which practically always comes with flavor violation, this type of CP
violation has nothing to do with flavor changes.

Strong CP violation induces an electric dipole moment of the neutron
dp ~ (1.5 x 10716 cm) 6 .
The non-observation of d,, implies § < 10710,

We don’t understand why 6 should be so small and this is called the
strong CP problem.
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Total parameter count of the SM

“Classical” SM without neutrinos: 19
e Gauge sector: g, ¢/, g3 ,
e Higgs sector: v, A,
* Flavor sector:

® Masses: Yu, Ye, Y3 Yds Yss Ybs Yer Ypus Yrs
* Mixings: 67,, 015, 635, (in Wolfenstein parametrization X, A, p)
® Phases: 5CKM; (in Wolfenstein parametrization 7)
e Exotic: QQCD-
Including neutrinos with Dirac (Majorana) mass terms: +7(9)
¢ Neutrino flavor sector:
® Masses: my, ma, ms;
e Mixings: 6%, 6%,, 05,
® Phases: dpmns, (+¢1,02 for Majorana neutrinos)
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Global (accidental?) symmetries of the SM
There are also global symmetries in the SM that (unlike gauge
‘symmetries’) relate physically distinguishable states.

These global symmetries are “accidential”. Either because they arise
in the slipstream of gauge symmetries, or because parameters are
“such and such”.
e Custodial symmetry: SO(4) (H), SO(3) = p =1 (at tree level).
Broken by ¢'.
® Nuclear isospin SU(2): n <> p, because m,, ~ my.
e Chiral symmetry of QCD SU(3);, x SU(3)g (explicitly(2x) and
spontaneously broken) — QCD lecture.
& Nobel prize Gell-Mann 1969 2>

* Lepton family numbers U(1)., U(1),, U(1).. Broken by neutrino
masses m, = CLF (e.g.u — ev) heavily suppressed.
e Baryon(B)- and Lepton(L)-number symmetries U(1)g&U(1)y..
Broken by chiral anomaly with SU(2)y,.
U(1)p_1. is conserved in presence of 3 right-handed neutrinos.
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The experimental success of the SM

Standard Model Production Cross Section Measurements ~ aus, Jra
T T T T T T T T T T T [
op P
pp inelastic %*x‘x 0:
Jets R=0.4 & o
ts R=0.4 o o
preusey O —
4 Ppr>100GeV 1O ooy B !
w
o ¥ :
z § ;
0,025
o -
@ OA Theory 2
v 5 3
[ & LHC pp V5 =13 TeV 3
o 5
ww Data
T o
k24 i °E;>2‘5§;\2',ﬁ o stat & syst
we & ° LHC pp V5 =8 TeV
o
wz Data 3
22 § - stat sé
tomchan oé . . %
Wy o © LHC pp Vs =7 TeV &
zr - 6 - Data o4
Ll o stat 2
tzj o a stat @ syst 1
Hw a _ )3
&z = un LHC pp V5 =5 TeV 2
= 1
tty Iy D 2
0 6
Wijewk & = 2
Zjjewk a §
vy 27 a ).
Wyy e . ¥
o wwy ot ATLAS Preliminary ;
Zyjiewk e O :}
WEW=jj EWK - = :
Wellews o \s=5,7,8,13 TeV ;
ZZijEwK b L " L " " " " n "
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The experlmental success of the SM

M, el fitter[o[2 | o
My, j: 15
Il 0.1
M, 03 DR -
Iz 0.2 p 12
in 20 09
Chaa -1.5 ::"sza 08
Rl 1.0 i, b
Al
A% 0.9 BEm 10
jisg Volnse 04
A(LEP) 0.1 Qf&"‘"‘)’ 03
oty
A(SLD) 2.1 BOom o4
lept B(D,—uv) 09
sm() (Q ) -0.7 B(D,—tv) 1.2
a Iepl B(D-KIy) 15
sin“e, (Tevt) 0.1 B(D- 7k} 0.1
o 0,c Wedotuiee 0.0
A% 0.8 Voiwe 04
™ 8, 21
e 2|3 B
A 0.0 R(K 15
0.1 H
A v L L L 1
E = 06 005 1 15 2 25 3
R 0.0 Puli o)
R® — 0.7
b
m, = os  SM is highly predictive and
(5) 2
M [n -0.2 H
Anad M) | shockingly successfull.
og(M) 1.3

2 -1 0 1 2 3
(ofil - omeas) / Omeas
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Really, no deviations?

There will always be statistical fluctuations—deviations. . .
... significance is important!

For example: Long-standing (3 — 4)o deviation in muon anomalous
. 1
magnetic moment a, = - (g, — 2). Sag m3

2 ~—
(47 MNP

This is an indirect test of the whole SM (and NP).

BNLg2 —+—— @+

FNALg2 +——8——+

> > - = =
It nop nop popt hadony, |
Discrepancy between SM theory prediction and measurement: E— Exornen
Verage
Aa# = aexp — aSM = 251(59) X 10711 . 175 180 185 19.0 195 200 205 210 215
(2 K a,%10° - 1165900 [Abi etal. 21]

Other increasinly significant deviations: Tests of “Lepton Flavor Universality” (LFU)
(at LHCb/Belle(ll)/Babar) B — Kuu/B — Kee, B — Dtv/B — Div, ...
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Ongoing tests of Higgs properties

35.9-137 b (13 TeV)

Recall: Higgs couplings to Ei: Fems ‘ T
. 3 .
fermions S - 12538Gev g
“‘\>'07‘7 p-value = 44% 3
m &
gnff = Tf X my . 102k “B}?.f‘ ]
. . . . 100k ‘ 3 chwr bosgns ]
Higgs self-interactions, in- & P oMo
duced by SSB 10’4,‘ LT SM‘nggs boson ‘ J
(% 1.5pmT T T T
2 2 e +..' ____________________ LA
m A A =
V(h) = —Lh2+Zoh®+Zhidconst. & osi ! - i
2 2 8
Particle mass (GeV)

vz%, mp, = 2 02 .
The cubic and quartic self-
couplings of the Higgs boson
are predicted in the SM.

R3 (= >\3h/)\§}1¥1

0 10 20

30 40 50
68% CL bounds on x, [%] =
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SM couplings

102 10* 106 10° 10' 102 10M 10' 10'® 10%

RGE scale p in GeV

_RG Evolution to high scales

Higgs quartic coupling A

0.081 30 bands in
M, =173.1 + 0.6 GeV (gray)
@3(Myz) = 0.1184 + 0.0007(red)
0.06 - M, =125.7 + 0.3 GeV (blue)
0.04 -
0.02[
0.00
—0.02
M, =174.9 GeV
S004E
102 10 105 10° 10 102 10™ 10 10' 10%

RGE scale p in GeV

Figure 1: Left: SM RG evolution of the gauge couplings g1 = \/m_q’, g2 = g, g3 = gs, of the
top and bottom Yukawa couplings (yt,ys), and of the Higgs quartic coupling \. All couplings are
defined in the MS scheme. The thickness indicates the +10 uncertainty. Right: RG evolution of
A wvarying My, My, and os by +30.
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(Near?) Criticality of the SM

180 -
200 _ F AL
> > | Meta=$tability. - -~
S . i
% B F 8
& 150 =z 2 1750
.- $ E« a8 2
5 | -
é 100 Stability g g ) 1
a ] & op . ]
= b o S
50 = 5 Stability ]
0 165 = . " ,
0 50 100 150 200 115 120 125 130 135

Higgs mass M; in GeV [Degrassietal JHEP 08 (2012) 098] Higgs mass M;, in GeV

Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the M~
My, plane (upper left) and in the -y plane, in terms of parameter renormalized at the Planck
scale (upper right). Bottom: Zoom in the region of the preferred experimental range of My and
M (the gray areas denote the allowed region at 1, 2, and 30 ). The three boundary lines correspond
to as(Mz) = 0.1184 £ 0.0007, and the grading of the colors indicates the size of the theoretical
error. The dotted contour-lines show the instability scale A in GeV assuming os(Mz) = 0.1184.
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Puzzles and problems of the
Standard Model

® Neutrino masses. m, = 0 in the SM. = SM must be extended!
& Nobel prize Kajita and McDonald 2015 3}

(“for discovery of neutrino oscillations, which shows that neutrinos have mass”)

Empirically > " m, < 0.1eV. Easily remedied, e.g. Dirac/Majorana mass for v:

- = 1
Lm, =y LHvp, of Lp, = X (LH)T (LH) .

Exact mechanism for m,, still unclear. —> see neutrino lectures
® Strong CP problem (“Why no CP violation in strong interactions?”).
® Flavor puzzle (“Why hierachical masses and mixings? Why three generations?”).
® Charge quantization (“Why is Hydrogen neutral?”).
® Vacuum stability? U(1) Landau pole at high scale? S

I// \\\

® Electroweak hierarchy problem (“why m;, < Mp;”). '\\ ,/'
® Baryon asymmetry of the Universe? o
e What is Dark Matter? h -2~ )
® Computation of vacuum energies? (what is Dark Energy?)
[ ]

Unification with gravity?
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Beyond the Standard Model

e Grand Unified Theories (GUTS)

SO(10) / SU(5) D SU(3) x SU(2) x U(1) .
16 = 1095@®1 = (3,2)1/68(3,1) —2/3B(1,1)18(3,1)1/3®(1,2) _1/2B(1, 1)o

* Would explain charge quantization and unification of gauge
couplings!
® Predicts proton decay (not observed. . .).

¢ Unification of Higgs representations? 'Doublet-triplet
splitting’.

e Supersymmetry Bosons <+ Fermions.
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Thank You!
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Backup slides
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[Image credit: Fred Jegerlehner]
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