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Purpose of work:

1)

2)

show that when a charged particle- including a relativistic
particle - moves in some spherically or axially symmetric
external fields or fields of magnetic monopoles, including
non-Abelian monopoles, it is sufficient to know only the
first integrals of motion to find the curvature K or some
form-invariant combination of curvature and torsion £ in
addition to external field, despite the fact that the
trajectory is the second integral of motion.

Indicate examples of the corresponding external fields as
classical solutions of gauge models of field theory.



Frenet's equations relate curvature and torsion to
the motion of the Frenet frame from the tangent,
normal, and binormal
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Using general kinematic relations
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curvature and torsion can be written in terms of
speed and acceleration
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Motion under the action of the Lorentz force
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Curvature in spherically symmetric potential fields
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Movement in a magnetic field
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let's introduce the unit vector of the direction of the external
field
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Motion in a stationary and uniform in the direction
magnetic field
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Dirac's Abelian monopole
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Relativistic case
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Stationary non-abelian fields

For fields independent of x°i.e. (8°—> O) , in gauge A’(x)=0
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Wong's equations:
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Cases of existence of a form-invariant
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Abelization for the nonrelativistic limit and for the field
of a non-abelian Wu-Yang monopole
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Young-Mills Lagrangian  George-Gleshaw Lagrangian
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Wu-Yang's monopole Hooft-Polyakov monopole
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General stationary “ss” calibration field
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The non-Abelian Wu-Yang monopole corresponds to the
values ¥ = -1, a = [ =0, i.e. purely longitudinal
contribution in the interior and configuration spaces
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Equations of motion for general fields in
the Georgie-Gleshaw model
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substituting: Y (r)=K(r)cosa(r),  B(r)=K(r)sinw(r),

for which Y242 =K2>0, ro, o(r)=a(r)
leads to the well-known Hooft-Polyakov equations:
K
O('jr —K[K?+H2-1], ddH—H{/l[H )]+2K2}
r

with boundary conditions at r — (:
K(r)—1+0(r), H(r)-0(r)

and r > o0 K(r)~e‘“"r, S(r‘)~e_2MIr if A>0,

S(r)~1/(™r) if  A=0.
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Chromo-magnetic field in an arbitrary gauge:
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Taking K(r) as a constant K(r): CatC=0

we get to particular solutions of the system with boundary
conditions at ' — o0 in the form of the Higgs field

H(r)=Mr

and the Wu-Yang monopole with the same abelization
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Substitution IB = 77Y at Y, = Ne*'?and 77 =FI
gives the equations :

r2N"—(H2-1)N =0, r*H"= eiz[H 2 —(I\/Ir)Z]H
for which we have exact solutions :
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The final solution for the fields is written in terms of the
transverse tensor :

Tia — eilw[(51a j )+ Ingank] in the form :
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Longitudinal component of the field exactly coincides
with the field of the non-Abelian Wu-Yang monopole.

The found solution also leads to the classical Dirac
monopole  __ N
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er
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Conclusion

*The existence of a form-invariant combination of curvature
and torsion, which is the same for Abelian and non-Abelian

external magnetic fields with different types of symmetry, is
established.

*A new analytical monopole solution of the equations of the
George-Glashow model is obtained in an arbitrary gauge with
an explicitly "split off" contribution of the Wu-Yang
monopole, and containing the Dirac monopole in already
known form

*The results are published in the work : E. A. Voronova, S. E.
Korenblit, Russian Physics Journal, Vol. 64, No. 1 (2021) pp
35—42.

Thanks for attention
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Substituting any of the found "chromo-magnetic" fields
together with the Higgs field into the Hooft tensor:

pio= NGo TN (5i6) (B4R) =B

(hb hb )]/2 ) e(hb hb )3/2

we obtain to the field of the classical Dirac monopole







